Google I/O is a wrap! Catch up on TensorFlow sessions

# tf.nn.conv2d

Computes a 2-D convolution given 4-D input and filters tensors.

Given an input tensor of shape [batch, in_height, in_width, in_channels] and a filter / kernel tensor of shape [filter_height, filter_width, in_channels, out_channels], this op performs the following:

1. Flattens the filter to a 2-D matrix with shape [filter_height * filter_width * in_channels, output_channels].
2. Extracts image patches from the input tensor to form a virtual tensor of shape [batch, out_height, out_width, filter_height * filter_width * in_channels].
3. For each patch, right-multiplies the filter matrix and the image patch vector.

In detail, with the default NHWC format,

output[b, i, j, k] =
sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] *
filter[di, dj, q, k]

Must have strides[0] = strides[3] = 1. For the most common case of the same horizontal and vertices strides, strides = [1, stride, stride, 1].

input A Tensor. Must be one of the following types: half, bfloat16, float32, float64. A 4-D tensor. The dimension order is interpreted according to the value of data_format, see below for details.
filters A Tensor. Must have the same type as input. A 4-D tensor of shape [filter_height, filter_width, in_channels, out_channels]
strides An int or list of ints that has length 1, 2 or 4. The stride of the sliding window for each dimension of input. If a single value is given it is replicated in the H and W dimension. By default the N and C dimensions are set to 1. The dimension order is determined by the value of data_format, see below for details.