Help protect the Great Barrier Reef with TensorFlow on Kaggle

tf.random.uniform_candidate_sampler

Samples a set of classes using a uniform base distribution.

This operation randomly samples a tensor of sampled classes (sampled_candidates) from the range of integers [0, range_max).

The elements of sampled_candidates are drawn without replacement (if unique=True) or with replacement (if unique=False) from the base distribution.

The base distribution for this operation is the uniform distribution over the range of integers [0, range_max).

In addition, this operation returns tensors true_expected_count and sampled_expected_count representing the number of times each of the target classes (true_classes) and the sampled classes (sampled_candidates) is expected to occur in an average tensor of sampled classes. These values correspond to Q(y|x) defined in this document. If unique=True, then these are post-rejection probabilities and we compute them approximately.

true_classes A Tensor of type int64 and shape [batch_size, num_true]. The target classes.
num_true An int. The number of target classes per training example.
num_sampled An int. The number of classes to randomly sample. The sampled_candidates return value will have shape [num_sampled]. If unique=True, num_sampled must be less than or equal to range_max.
unique A bool. Determines whether all sampled classes in a batch are unique.
range_max An int. The number of possible classes.
seed An int. An operation-specific seed. Default is 0.
name A name for the operation (optional).

sampled_candidates A tensor of type int64 and shape [num_sampled]. The sampled classes, either with possible duplicates (unique=False) or all unique (unique=True). In either case, sampled_candidates is independent of the true classes.
true_expected_count A tensor of type float. Same shape as true_classes. The expected counts under the sampling distribution of each of true_classes.
sampled_expected_count A tensor of type float. Same shape as sampled_candidates. The expected counts under the sampling distribution of each of sampled_candidates.

[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"Missing the information I need" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"Too complicated / too many steps" },{ "type": "thumb-down", "id": "outOfDate", "label":"Out of date" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"Other" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"Easy to understand" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"Solved my problem" },{ "type": "thumb-up", "id": "otherUp", "label":"Other" }]