tf.math.top_k

Finds values and indices of the k largest entries for the last dimension.

If the input is a vector (rank=1), finds the k largest entries in the vector and outputs their values and indices as vectors. Thus values[j] is the j-th largest entry in input, and its index is indices[j].

result = tf.math.top_k([1, 2, 98, 1, 1, 99, 3, 1, 3, 96, 4, 1],
                        k=3)
result.values.numpy()
array([99, 98, 96], dtype=int32)
result.indices.numpy()
array([5, 2, 9], dtype=int32)

For matrices (resp. higher rank input), computes the top k entries in each row (resp. vector along the last dimension). Thus,

input = tf.random.normal(shape=(3,4,5,6))
k = 2
values, indices  = tf.math.top_k(input, k=k)
values.shape.as_list()
[3, 4, 5, 2]

values.shape == indices.shape == input.shape[:-1] + [k]
True

The indices can be used to gather from a tensor who's shape matches input.

gathered_values = tf.gather(input, indices, batch_dims=-1)
assert tf.reduce_all(gathered_values == values)

If two elements are equal, the lower-index element appears first.

result = tf.math.top_k([1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0],
                       k=3)
result.indices.numpy()
array([0, 1, 3], dtype=int32)

By default, indices are returned as type int32, however, this can be changed by specifying the index_type.

result = tf.math.top_k([1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0],
                       k=3, index_type=tf.int16)
result.indices.numpy()
array([0, 1, 3], dtype=int16)

input 1-D or higher Tensor with last dimension at least k.
k 0-D Tensor of type int16, int32 or int64. Number of top element to look for along the last dimension (along each row for matrices).
sorted If true the resulting k elements will be sorted by the values in descending order.
index_type Optional dtype for output indices.
name Optional name for the operation.

A tuple with two named fields:
values The k largest elements along each last dimensional slice.
indices The indices of values within the last dimension of input.