Stacks a list of rank-R
tensors into one rank-(R+1)
RaggedTensor
.
tf.ragged.stack(
values: typing.List[ragged_tensor.RaggedOrDense], axis=0, name=None
)
Given a list of tensors or ragged tensors with the same rank R
(R >= axis
), returns a rank-R+1
RaggedTensor
result
such that
result[i0...iaxis]
is [value[i0...iaxis] for value in values]
.
Examples:
# Stacking two ragged tensors.
t1 = tf.ragged.constant([[1, 2], [3, 4, 5]])
t2 = tf.ragged.constant([[6], [7, 8, 9]])
tf.ragged.stack([t1, t2], axis=0)
<tf.RaggedTensor [[[1, 2], [3, 4, 5]], [[6], [7, 8, 9]]]>
tf.ragged.stack([t1, t2], axis=1)
<tf.RaggedTensor [[[1, 2], [6]], [[3, 4, 5], [7, 8, 9]]]>
# Stacking two dense tensors with different sizes.
t3 = tf.constant([[1, 2, 3], [4, 5, 6]])
t4 = tf.constant([[5], [6], [7]])
tf.ragged.stack([t3, t4], axis=0)
<tf.RaggedTensor [[[1, 2, 3], [4, 5, 6]], [[5], [6], [7]]]>
Args |
values
|
A list of tf.Tensor or tf.RaggedTensor . May not be empty. All
values must have the same rank and the same dtype; but unlike
tf.stack , they can have arbitrary dimension sizes.
|
axis
|
A python integer, indicating the dimension along which to stack.
(Note: Unlike tf.stack , the axis parameter must be statically known.)
Negative values are supported only if the rank of at least one
values value is statically known.
|
name
|
A name prefix for the returned tensor (optional).
|
Returns |
A RaggedTensor with rank R+1 (if R>0 ).
If R==0 , then the result will be returned as a 1D Tensor , since
RaggedTensor can only be used when rank>1 .
result.ragged_rank=1+max(axis, max(rt.ragged_rank for rt in values])) .
|
Raises |
ValueError
|
If values is empty, if axis is out of bounds or if
the input tensors have different ranks.
|