Tune in to the first Women in ML Symposium this Tuesday, October 19 at 9am PST Register now

EditDistance

public final class EditDistance

Computes the (possibly normalized) Levenshtein Edit Distance.

The inputs are variable-length sequences provided by SparseTensors (hypothesis_indices, hypothesis_values, hypothesis_shape) and (truth_indices, truth_values, truth_shape).

The inputs are:

Nested Classes

class EditDistance.Options Optional attributes for EditDistance  

Public Methods

Output<Float>
asOutput()
Returns the symbolic handle of a tensor.
static <T> EditDistance
create(Scope scope, Operand<Long> hypothesisIndices, Operand<T> hypothesisValues, Operand<Long> hypothesisShape, Operand<Long> truthIndices, Operand<T> truthValues, Operand<Long> truthShape, Options... options)
Factory method to create a class wrapping a new EditDistance operation.
static EditDistance.Options
normalize(Boolean normalize)
Output<Float>
output()
A dense float tensor with rank R - 1.

Inherited Methods

Public Methods

public Output<Float> asOutput ()

Returns the symbolic handle of a tensor.

Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.

public static EditDistance create (Scope scope, Operand<Long> hypothesisIndices, Operand<T> hypothesisValues, Operand<Long> hypothesisShape, Operand<Long> truthIndices, Operand<T> truthValues, Operand<Long> truthShape, Options... options)

Factory method to create a class wrapping a new EditDistance operation.

Parameters
scope current scope
hypothesisIndices The indices of the hypothesis list SparseTensor. This is an N x R int64 matrix.
hypothesisValues The values of the hypothesis list SparseTensor. This is an N-length vector.
hypothesisShape The shape of the hypothesis list SparseTensor. This is an R-length vector.
truthIndices The indices of the truth list SparseTensor. This is an M x R int64 matrix.
truthValues The values of the truth list SparseTensor. This is an M-length vector.
truthShape truth indices, vector.
options carries optional attributes values
Returns
  • a new instance of EditDistance

public static EditDistance.Options normalize (Boolean normalize)

Parameters
normalize boolean (if true, edit distances are normalized by length of truth).

The output is:

public Output<Float> output ()

A dense float tensor with rank R - 1.

For the example input:

// hypothesis represents a 2x1 matrix with variable-length values: // (0,0) = ["a"] // (1,0) = ["b"] hypothesis_indices = [[0, 0, 0], [1, 0, 0]] hypothesis_values = ["a", "b"] hypothesis_shape = [2, 1, 1]

// truth represents a 2x2 matrix with variable-length values: // (0,0) = [] // (0,1) = ["a"] // (1,0) = ["b", "c"] // (1,1) = ["a"] truth_indices = [[0, 1, 0], [1, 0, 0], [1, 0, 1], [1, 1, 0]] truth_values = ["a", "b", "c", "a"] truth_shape = [2, 2, 2] normalize = true

The output will be:

// output is a 2x2 matrix with edit distances normalized by truth lengths. output = [[inf, 1.0], // (0,0): no truth, (0,1): no hypothesis [0.5, 1.0]] // (1,0): addition, (1,1): no hypothesis