Help protect the Great Barrier Reef with TensorFlow on Kaggle

# tensorflow:: ops:: ResourceSparseApplyRMSProp

``` #include <training_ops.h> ```

Update '*var' according to the RMSProp algorithm.

## Summary

Note that in dense implementation of this algorithm, ms and mom will update even if the grad is zero, but in this sparse implementation, ms and mom will not update in iterations during which the grad is zero.

mean_square = decay * mean_square + (1-decay) * gradient ** 2 Delta = learning_rate * gradient / sqrt(mean_square + epsilon)

ms <- rho * ms_{t-1} + (1-rho) * grad * grad mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon) var <- var - mom

Args:

• scope: A Scope object
• var: Should be from a Variable().
• ms: Should be from a Variable().
• mom: Should be from a Variable().
• lr: Scaling factor. Must be a scalar.
• rho: Decay rate. Must be a scalar.
• epsilon: Ridge term. Must be a scalar.
• indices: A vector of indices into the first dimension of var, ms and mom.

Optional attributes (see ``` Attrs ``` ):

• use_locking: If ``` True ``` , updating of the var, ms, and mom tensors is protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.

Returns:

• the created ``` Operation ```

### Constructors and Destructors

``` ResourceSparseApplyRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad, :: tensorflow::Input indices) ```
``` ResourceSparseApplyRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad, :: tensorflow::Input indices, const ResourceSparseApplyRMSProp::Attrs & attrs) ```

### Public attributes

``` operation ```
``` Operation ```

### Public functions

``` operator::tensorflow::Operation () const ```
``` ```

### Public static functions

``` UseLocking (bool x) ```
``` Attrs ```

### Structs

tensorflow:: ops:: ResourceSparseApplyRMSProp:: Attrs

Optional attribute setters for ResourceSparseApplyRMSProp .

## Public attributes

### operation

`Operation operation`

## Public functions

### ResourceSparseApplyRMSProp

``` ResourceSparseApplyRMSProp(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input ms,
::tensorflow::Input mom,
::tensorflow::Input lr,
::tensorflow::Input rho,
::tensorflow::Input momentum,
::tensorflow::Input epsilon,
::tensorflow::Input indices
)```

### ResourceSparseApplyRMSProp

``` ResourceSparseApplyRMSProp(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input ms,
::tensorflow::Input mom,
::tensorflow::Input lr,
::tensorflow::Input rho,
::tensorflow::Input momentum,
::tensorflow::Input epsilon,
::tensorflow::Input indices,
const ResourceSparseApplyRMSProp::Attrs & attrs
)```

### operator::tensorflow::Operation

` operator::tensorflow::Operation() const `

## Public static functions

### UseLocking

```Attrs UseLocking(
bool x
)```
[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"Missing the information I need" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"Too complicated / too many steps" },{ "type": "thumb-down", "id": "outOfDate", "label":"Out of date" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"Other" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"Easy to understand" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"Solved my problem" },{ "type": "thumb-up", "id": "otherUp", "label":"Other" }]