Google I/O is a wrap! Catch up on TensorFlow sessions

tensorflow:: ops:: SparseApplyRMSProp

 #include <training_ops.h> 

Update '*var' according to the RMSProp algorithm.

Summary

Note that in dense implementation of this algorithm, ms and mom will update even if the grad is zero, but in this sparse implementation, ms and mom will not update in iterations during which the grad is zero.

mean_square = decay * mean_square + (1-decay) * gradient ** 2 Delta = learning_rate * gradient / sqrt(mean_square + epsilon)

$$ms <- rho * ms_{t-1} + (1-rho) * grad * grad$$
$$mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)$$
$$var <- var - mom$$

Args:

• scope: A Scope object
• var: Should be from a Variable().
• ms: Should be from a Variable().
• mom: Should be from a Variable().
• lr: Scaling factor. Must be a scalar.
• rho: Decay rate. Must be a scalar.
• epsilon: Ridge term. Must be a scalar.
• indices: A vector of indices into the first dimension of var, ms and mom.

Optional attributes (see  Attrs  ):

• use_locking: If  True  , updating of the var, ms, and mom tensors is protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.

Returns:

•  Output  : Same as "var".

Constructors and Destructors

 SparseApplyRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad, :: tensorflow::Input indices) 
 SparseApplyRMSProp (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input ms, :: tensorflow::Input mom, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input momentum, :: tensorflow::Input epsilon, :: tensorflow::Input grad, :: tensorflow::Input indices, const SparseApplyRMSProp::Attrs & attrs) 

Public attributes

 operation 
 Operation 
 out 
 :: tensorflow::Output 

Public functions

 node () const 
 ::tensorflow::Node * 
 operator::tensorflow::Input () const 
 
 operator::tensorflow::Output () const 
 

Public static functions

 UseLocking (bool x) 
 Attrs 

Structs

tensorflow:: ops:: SparseApplyRMSProp:: Attrs

Optional attribute setters for SparseApplyRMSProp .

Public attributes

operation

Operation operation

out

::tensorflow::Output out

Public functions

SparseApplyRMSProp

 SparseApplyRMSProp(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input ms,
::tensorflow::Input mom,
::tensorflow::Input lr,
::tensorflow::Input rho,
::tensorflow::Input momentum,
::tensorflow::Input epsilon,
::tensorflow::Input indices
)

SparseApplyRMSProp

 SparseApplyRMSProp(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input ms,
::tensorflow::Input mom,
::tensorflow::Input lr,
::tensorflow::Input rho,
::tensorflow::Input momentum,
::tensorflow::Input epsilon,
::tensorflow::Input indices,
const SparseApplyRMSProp::Attrs & attrs
)

node

::tensorflow::Node * node() const

operator::tensorflow::Input

 operator::tensorflow::Input() const

operator::tensorflow::Output

 operator::tensorflow::Output() const

Public static functions

UseLocking

Attrs UseLocking(
bool x
)
[{ "type": "thumb-down", "id": "missingTheInformationINeed", "label":"Missing the information I need" },{ "type": "thumb-down", "id": "tooComplicatedTooManySteps", "label":"Too complicated / too many steps" },{ "type": "thumb-down", "id": "outOfDate", "label":"Out of date" },{ "type": "thumb-down", "id": "samplesCodeIssue", "label":"Samples / code issue" },{ "type": "thumb-down", "id": "otherDown", "label":"Other" }]
[{ "type": "thumb-up", "id": "easyToUnderstand", "label":"Easy to understand" },{ "type": "thumb-up", "id": "solvedMyProblem", "label":"Solved my problem" },{ "type": "thumb-up", "id": "otherUp", "label":"Other" }]