tf.compat.v1.data.Iterator

Represents the state of iterating through a Dataset.

iterator_resource A tf.resource scalar tf.Tensor representing the iterator.
initializer A tf.Operation that should be run to initialize this iterator.
output_types A (nested) structure of tf.DType objects corresponding to each component of an element of this iterator.
output_shapes A (nested) structure of tf.TensorShape objects corresponding to each component of an element of this iterator.
output_classes A (nested) structure of Python type objects corresponding to each component of an element of this iterator.

TypeError If output_types, output_shapes, or output_classes is not specified.

element_spec The type specification of an element of this iterator.

For more information, read this guide.

initializer A tf.Operation that should be run to initialize this iterator.
output_classes Returns the class of each component of an element of this iterator. (deprecated)

The expected values are tf.Tensor and tf.sparse.SparseTensor.

output_shapes Returns the shape of each component of an element of this iterator. (deprecated)

output_types Returns the type of each component of an element of this iterator. (deprecated)

Methods

from_string_handle

View source

Creates a new, uninitialized Iterator based on the given handle.

This method allows you to define a "feedable" iterator where you can choose between concrete iterators by feeding a value in a tf.Session.run call. In that case, string_handle would be a tf.compat.v1.placeholder, and you would feed it with the value of tf.data.Iterator.string_handle in each step.

For example, if you had two iterators that marked the current position in a training dataset and a test dataset, you could choose which to use in each step as follows:

train_iterator = tf.data.Dataset(...).make_one_shot_iterator()
train_iterator_handle = sess.run(train_iterator.string_handle())

test_iterator = tf.data.Dataset(...).make_one_shot_iterator()
test_iterator_handle = sess.run(test_iterator.string_handle())

handle = tf.compat.v1.placeholder(tf.string, shape=[])
iterator = tf.data.Iterator.from_string_handle(
    handle, train_iterator.output_types)

next_element = iterator.get_next()
loss = f(next_element)

train_loss = sess.run(loss, feed_dict={handle: train_iterator_handle})
test_loss = sess.run(loss, feed_dict={handle: test_iterator_handle})

Args
string_handle A scalar tf.Tensor of type tf.string that evaluates to a handle produced by the Iterator.string_handle() method.
output_types A (nested) structure of tf.DType objects corresponding to each component of an element of this dataset.
output_shapes (Optional.) A (nested) structure of tf.TensorShape objects corresponding to each component of an element of this dataset. If omitted, each component will have an unconstrainted shape.
output_classes (Optional.) A (nested) structure of Python type objects corresponding to each component of an element of this iterator. If omitted, each component is assumed to be of type tf.Tensor.

Returns
An Iterator.

from_structure

View source

Creates a new, uninitialized Iterator with the given structure.

This iterator-constructing method can be used to create an iterator that is reusable with many different datasets.

The returned iterator is not bound to a particular dataset, and it has no initializer. To initialize the iterator, run the operation returned by Iterator.make_initializer(dataset).

The following is an example

iterator = Iterator.from_structure(tf.int64, tf.TensorShape([]))

dataset_range = Dataset.range(10)
range_initializer = iterator.make_initializer(dataset_range)

dataset_evens = dataset_range.filter(lambda x: x % 2 == 0)
evens_initializer = iterator.make_initializer(dataset_evens)

# Define a model based on the iterator; in this example, the model_fn
# is expected to take scalar tf.int64 Tensors as input (see
# the definition of 'iterator' above).
prediction, loss = model_fn(iterator.get_next())

# Train for `num_epochs`, where for each epoch, we first iterate over
# dataset_range, and then iterate over dataset_evens.
for _ in range(num_epochs):
  # Initialize the iterator to `dataset_range`
  sess.run(range_initializer)
  while True:
    try:
      pred, loss_val = sess.run([prediction, loss])
    except tf.errors.OutOfRangeError:
      break

  # Initialize the iterator to `dataset_evens`
  sess.run(evens_initializer)
  while True:
    try:
      pred, loss_val = sess.run([prediction, loss])
    except tf.errors.OutOfRangeError:
      break

Args
output_types A (nested) structure of tf.DType objects corresponding to each component of an element of this dataset.
output_shapes (Optional.) A (nested) structure of tf.TensorShape objects corresponding to each component of an element of this dataset. If omitted, each component will have an unconstrainted shape.
shared_name (Optional.) If non-empty, this iterator will be shared under the given name across multiple sessions that share the same devices (e.g. when using a remote server).
output_classes (Optional.) A (nested) structure of Python type objects corresponding to each component of an element of this iterator. If omitted, each component is assumed to be of type tf.Tensor.

Returns
An Iterator.

Raises
TypeError If the structures of output_shapes and output_types are not the same.

get_next

View source

Returns the next element.

In graph mode, you should typically call this method once and use its result as the input to another computation. A typical loop will then call tf.Session.run on the result of that computation. The loop will terminate when the Iterator.get_next() operation raises tf.errors.OutOfRangeError. The following skeleton shows how to use this method when building a training loop:

dataset = ...  # A `tf.data.Dataset` object.
iterator = dataset.make_initializable_iterator()
next_element = iterator.get_next()

# Build a TensorFlow graph that does something with each element.
loss = model_function(next_element)
optimizer = ...  # A `tf.compat.v1.train.Optimizer` object.
train_op = optimizer.minimize(loss)

with tf.compat.v1.Session() as sess:
  try:
    while True:
      sess.run(train_op)
  except tf.errors.OutOfRangeError:
    pass

Args
name (Optional.) A name for the created operation.

Returns
A (nested) structure of values matching tf.data.Iterator.element_spec.

get_next_as_optional

View source

make_initializer

View source

Returns a tf.Operation that initializes this iterator on dataset.

Args
dataset A Dataset whose element_spec if compatible with this iterator.
name (Optional.) A name for the created operation.

Returns
A tf.Operation that can be run to initialize this iterator on the given dataset.

Raises
TypeError If dataset and this iterator do not have a compatible element_spec.

string_handle

View source

Returns a string-valued tf.Tensor that represents this iterator.

Args
name (Optional.) A name for the created operation.

Returns
A scalar tf.Tensor of type tf.string.