質問があります? TensorFlowフォーラム訪問フォーラムでコミュニティとつながる

TensorFlowアドオンオプティマイザ:ConditionalGradient

TensorFlow.orgで表示 Google Colab で実行 GitHub でソースを表示{ ノートブックをダウンロード/a0}

概要

このノートブックでは、アドオンパッケージのConditional Gradientオプティマイザの使用方法を紹介します。

ConditionalGradient

根本的な正則化の効果を出すために、ニューラルネットワークのパラメーターを制約することがトレーニングに有益であることが示されています。多くの場合、パラメーターはソフトペナルティ(制約充足を保証しない)または投影操作(計算コストが高い)によって制約されますが、Conditional Gradient(CG)オプティマイザは、費用のかかる投影ステップを必要とせずに、制約を厳密に適用します。これは、制約内のオブジェクトの線形近似を最小化することによって機能します。このノートブックでは、MNISTデータセットに対してCGオプティマイザを使用してフロベニウスノルム制約を適用する方法を紹介します。CGは、tensorflow APIとして利用可能になりました。オプティマイザの詳細は、https://arxiv.org/pdf/1803.06453.pdfを参照してください。

セットアップ

pip install -q -U tensorflow-addons
import tensorflow as tf
import tensorflow_addons as tfa
from matplotlib import pyplot as plt
# Hyperparameters
batch_size=64
epochs=10

モデルの構築

model_1 = tf.keras.Sequential([
    tf.keras.layers.Dense(64, input_shape=(784,), activation='relu', name='dense_1'),
    tf.keras.layers.Dense(64, activation='relu', name='dense_2'),
    tf.keras.layers.Dense(10, activation='softmax', name='predictions'),
])

データの準備

# Load MNIST dataset as NumPy arrays
dataset = {}
num_validation = 10000
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()

# Preprocess the data
x_train = x_train.reshape(-1, 784).astype('float32') / 255
x_test = x_test.reshape(-1, 784).astype('float32') / 255

カスタムコールバック関数の定義

def frobenius_norm(m):
    """This function is to calculate the frobenius norm of the matrix of all
    layer's weight.

    Args:
        m: is a list of weights param for each layers.
    """
    total_reduce_sum = 0
    for i in range(len(m)):
        total_reduce_sum = total_reduce_sum + tf.math.reduce_sum(m[i]**2)
    norm = total_reduce_sum**0.5
    return norm
CG_frobenius_norm_of_weight = []
CG_get_weight_norm = tf.keras.callbacks.LambdaCallback(
    on_epoch_end=lambda batch, logs: CG_frobenius_norm_of_weight.append(
        frobenius_norm(model_1.trainable_weights).numpy()))

トレーニングと評価:オプティマイザとしてCGを使用

一般的なkerasオプティマイザを新しいtfaオプティマイザに置き換えるだけです。

# Compile the model
model_1.compile(
    optimizer=tfa.optimizers.ConditionalGradient(
        learning_rate=0.99949, lambda_=203),  # Utilize TFA optimizer
    loss=tf.keras.losses.SparseCategoricalCrossentropy(),
    metrics=['accuracy'])

history_cg = model_1.fit(
    x_train,
    y_train,
    batch_size=batch_size,
    validation_data=(x_test, y_test),
    epochs=epochs,
    callbacks=[CG_get_weight_norm])
Epoch 1/10
938/938 [==============================] - 4s 3ms/step - loss: 0.5909 - accuracy: 0.8229 - val_loss: 0.2154 - val_accuracy: 0.9306
Epoch 2/10
938/938 [==============================] - 2s 3ms/step - loss: 0.1963 - accuracy: 0.9410 - val_loss: 0.1732 - val_accuracy: 0.9437
Epoch 3/10
938/938 [==============================] - 3s 3ms/step - loss: 0.1582 - accuracy: 0.9531 - val_loss: 0.1470 - val_accuracy: 0.9542
Epoch 4/10
938/938 [==============================] - 3s 3ms/step - loss: 0.1372 - accuracy: 0.9579 - val_loss: 0.1361 - val_accuracy: 0.9601
Epoch 5/10
938/938 [==============================] - 2s 3ms/step - loss: 0.1193 - accuracy: 0.9633 - val_loss: 0.1257 - val_accuracy: 0.9626
Epoch 6/10
938/938 [==============================] - 2s 3ms/step - loss: 0.1167 - accuracy: 0.9657 - val_loss: 0.1255 - val_accuracy: 0.9636
Epoch 7/10
938/938 [==============================] - 3s 3ms/step - loss: 0.1113 - accuracy: 0.9664 - val_loss: 0.1352 - val_accuracy: 0.9573
Epoch 8/10
938/938 [==============================] - 3s 3ms/step - loss: 0.1084 - accuracy: 0.9674 - val_loss: 0.1127 - val_accuracy: 0.9643
Epoch 9/10
938/938 [==============================] - 3s 3ms/step - loss: 0.1059 - accuracy: 0.9680 - val_loss: 0.1164 - val_accuracy: 0.9623
Epoch 10/10
938/938 [==============================] - 3s 3ms/step - loss: 0.1037 - accuracy: 0.9684 - val_loss: 0.1096 - val_accuracy: 0.9658

トレーニングと評価:オプティマイザとしてSGDを使用

model_2 = tf.keras.Sequential([
    tf.keras.layers.Dense(64, input_shape=(784,), activation='relu', name='dense_1'),
    tf.keras.layers.Dense(64, activation='relu', name='dense_2'),
    tf.keras.layers.Dense(10, activation='softmax', name='predictions'),
])
SGD_frobenius_norm_of_weight = []
SGD_get_weight_norm = tf.keras.callbacks.LambdaCallback(
    on_epoch_end=lambda batch, logs: SGD_frobenius_norm_of_weight.append(
        frobenius_norm(model_2.trainable_weights).numpy()))
# Compile the model
model_2.compile(
    optimizer=tf.keras.optimizers.SGD(0.01),  # Utilize SGD optimizer
    loss=tf.keras.losses.SparseCategoricalCrossentropy(),
    metrics=['accuracy'])

history_sgd = model_2.fit(
    x_train,
    y_train,
    batch_size=batch_size,
    validation_data=(x_test, y_test),
    epochs=epochs,
    callbacks=[SGD_get_weight_norm])
Epoch 1/10
938/938 [==============================] - 2s 2ms/step - loss: 1.5189 - accuracy: 0.5707 - val_loss: 0.4277 - val_accuracy: 0.8873
Epoch 2/10
938/938 [==============================] - 2s 2ms/step - loss: 0.4073 - accuracy: 0.8885 - val_loss: 0.3210 - val_accuracy: 0.9091
Epoch 3/10
938/938 [==============================] - 2s 2ms/step - loss: 0.3214 - accuracy: 0.9070 - val_loss: 0.2891 - val_accuracy: 0.9154
Epoch 4/10
938/938 [==============================] - 2s 2ms/step - loss: 0.2848 - accuracy: 0.9174 - val_loss: 0.2577 - val_accuracy: 0.9251
Epoch 5/10
938/938 [==============================] - 2s 2ms/step - loss: 0.2644 - accuracy: 0.9222 - val_loss: 0.2427 - val_accuracy: 0.9293
Epoch 6/10
938/938 [==============================] - 2s 2ms/step - loss: 0.2453 - accuracy: 0.9297 - val_loss: 0.2287 - val_accuracy: 0.9346
Epoch 7/10
938/938 [==============================] - 2s 2ms/step - loss: 0.2262 - accuracy: 0.9338 - val_loss: 0.2216 - val_accuracy: 0.9365
Epoch 8/10
938/938 [==============================] - 2s 2ms/step - loss: 0.2181 - accuracy: 0.9374 - val_loss: 0.2031 - val_accuracy: 0.9405
Epoch 9/10
938/938 [==============================] - 2s 2ms/step - loss: 0.1978 - accuracy: 0.9420 - val_loss: 0.1906 - val_accuracy: 0.9452
Epoch 10/10
938/938 [==============================] - 2s 2ms/step - loss: 0.1908 - accuracy: 0.9450 - val_loss: 0.1870 - val_accuracy: 0.9459

重みのフロベニウスノルム:CGとSGDの比較

現在のCGオプティマイザの実装はフロベニウスノルムに基づいており、フロベニウスノルムをターゲット関数の正則化機能と見なしています。ここでは、CGオプティマイザの正規化された効果を、フロベニウスノルム正則化機能のないSGDオプティマイザと比較します。

plt.plot(
    CG_frobenius_norm_of_weight,
    color='r',
    label='CG_frobenius_norm_of_weights')
plt.plot(
    SGD_frobenius_norm_of_weight,
    color='b',
    label='SGD_frobenius_norm_of_weights')
plt.xlabel('Epoch')
plt.ylabel('Frobenius norm of weights')
plt.legend(loc=1)
<matplotlib.legend.Legend at 0x7fbf3c16dc50>

png

トレーニングと検証の精度:CGとSGDの比較

plt.plot(history_cg.history['accuracy'], color='r', label='CG_train')
plt.plot(history_cg.history['val_accuracy'], color='g', label='CG_test')
plt.plot(history_sgd.history['accuracy'], color='pink', label='SGD_train')
plt.plot(history_sgd.history['val_accuracy'], color='b', label='SGD_test')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(loc=4)
<matplotlib.legend.Legend at 0x7fbf3c0d1e10>

png