Attend the Women in ML Symposium on December 7 Register now

Estimadores enlatados TF Lattice

Organiza tus páginas con colecciones Guarda y categoriza el contenido según tus preferencias.

Ver en TensorFlow.org Ejecutar en Google Colab Ver fuente en GitHub Descargar cuaderno

Descripción general

Los estimadores enlatados son formas rápidas y fáciles de entrenar modelos TFL para casos de uso típicos. Esta guía describe los pasos necesarios para crear un estimador estándar de TFL.

Configuración

Instalación del paquete TF Lattice:

pip install tensorflow-lattice

Importación de paquetes necesarios:

import tensorflow as tf

import copy
import logging
import numpy as np
import pandas as pd
import sys
import tensorflow_lattice as tfl
from tensorflow import feature_column as fc
logging.disable(sys.maxsize)

Descarga del conjunto de datos UCI Statlog (Corazón):

csv_file = tf.keras.utils.get_file(
    'heart.csv', 'http://storage.googleapis.com/download.tensorflow.org/data/heart.csv')
df = pd.read_csv(csv_file)
target = df.pop('target')
train_size = int(len(df) * 0.8)
train_x = df[:train_size]
train_y = target[:train_size]
test_x = df[train_size:]
test_y = target[train_size:]
df.head()

Configuración de los valores predeterminados utilizados para el entrenamiento en esta guía:

LEARNING_RATE = 0.01
BATCH_SIZE = 128
NUM_EPOCHS = 500
PREFITTING_NUM_EPOCHS = 10

Columnas de funciones

Como para cualquier otro estimador de TF, las necesidades de datos que se pasan al estimador, que es típicamente a través de un input_fn y analizan usando FeatureColumns .

# Feature columns.
# - age
# - sex
# - cp        chest pain type (4 values)
# - trestbps  resting blood pressure
# - chol      serum cholestoral in mg/dl
# - fbs       fasting blood sugar > 120 mg/dl
# - restecg   resting electrocardiographic results (values 0,1,2)
# - thalach   maximum heart rate achieved
# - exang     exercise induced angina
# - oldpeak   ST depression induced by exercise relative to rest
# - slope     the slope of the peak exercise ST segment
# - ca        number of major vessels (0-3) colored by flourosopy
# - thal      3 = normal; 6 = fixed defect; 7 = reversable defect
feature_columns = [
    fc.numeric_column('age', default_value=-1),
    fc.categorical_column_with_vocabulary_list('sex', [0, 1]),
    fc.numeric_column('cp'),
    fc.numeric_column('trestbps', default_value=-1),
    fc.numeric_column('chol'),
    fc.categorical_column_with_vocabulary_list('fbs', [0, 1]),
    fc.categorical_column_with_vocabulary_list('restecg', [0, 1, 2]),
    fc.numeric_column('thalach'),
    fc.categorical_column_with_vocabulary_list('exang', [0, 1]),
    fc.numeric_column('oldpeak'),
    fc.categorical_column_with_vocabulary_list('slope', [0, 1, 2]),
    fc.numeric_column('ca'),
    fc.categorical_column_with_vocabulary_list(
        'thal', ['normal', 'fixed', 'reversible']),
]

Los estimadores enlatados de TFL usan el tipo de la columna de características para decidir qué tipo de capa de calibración usar. Utilizamos un tfl.layers.PWLCalibration capa de columnas de características numéricas y una tfl.layers.CategoricalCalibration capa de columnas de características categóricas.

Tenga en cuenta que las columnas de funciones categóricas no están envueltas por una columna de funciones incrustada. Se introducen directamente en el estimador.

Creando input_fn

Como con cualquier otro estimador, puede usar un input_fn para alimentar datos al modelo para entrenamiento y evaluación. Los estimadores de TFL pueden calcular automáticamente los cuantiles de las características y utilizarlos como puntos clave de entrada para la capa de calibración de PWL. Para ello, se requieren pasar un feature_analysis_input_fn , que es similar a la formación input_fn pero con una sola época o una submuestra de los datos.

train_input_fn = tf.compat.v1.estimator.inputs.pandas_input_fn(
    x=train_x,
    y=train_y,
    shuffle=False,
    batch_size=BATCH_SIZE,
    num_epochs=NUM_EPOCHS,
    num_threads=1)

# feature_analysis_input_fn is used to collect statistics about the input.
feature_analysis_input_fn = tf.compat.v1.estimator.inputs.pandas_input_fn(
    x=train_x,
    y=train_y,
    shuffle=False,
    batch_size=BATCH_SIZE,
    # Note that we only need one pass over the data.
    num_epochs=1,
    num_threads=1)

test_input_fn = tf.compat.v1.estimator.inputs.pandas_input_fn(
    x=test_x,
    y=test_y,
    shuffle=False,
    batch_size=BATCH_SIZE,
    num_epochs=1,
    num_threads=1)

# Serving input fn is used to create saved models.
serving_input_fn = (
    tf.estimator.export.build_parsing_serving_input_receiver_fn(
        feature_spec=fc.make_parse_example_spec(feature_columns)))

Configuraciones de funciones

Calibración de características y configuraciones per-función se establecen con tfl.configs.FeatureConfig . Configuraciones de características incluyen restricciones de monotonicidad, regularización per-función (consulte tfl.configs.RegularizerConfig ) y tamaños de celosía para modelos de celosía.

Si ninguna configuración se define para una característica de entrada, la configuración por defecto en tfl.config.FeatureConfig se utiliza.

# Feature configs are used to specify how each feature is calibrated and used.
feature_configs = [
    tfl.configs.FeatureConfig(
        name='age',
        lattice_size=3,
        # By default, input keypoints of pwl are quantiles of the feature.
        pwl_calibration_num_keypoints=5,
        monotonicity='increasing',
        pwl_calibration_clip_max=100,
        # Per feature regularization.
        regularizer_configs=[
            tfl.configs.RegularizerConfig(name='calib_wrinkle', l2=0.1),
        ],
    ),
    tfl.configs.FeatureConfig(
        name='cp',
        pwl_calibration_num_keypoints=4,
        # Keypoints can be uniformly spaced.
        pwl_calibration_input_keypoints='uniform',
        monotonicity='increasing',
    ),
    tfl.configs.FeatureConfig(
        name='chol',
        # Explicit input keypoint initialization.
        pwl_calibration_input_keypoints=[126.0, 210.0, 247.0, 286.0, 564.0],
        monotonicity='increasing',
        # Calibration can be forced to span the full output range by clamping.
        pwl_calibration_clamp_min=True,
        pwl_calibration_clamp_max=True,
        # Per feature regularization.
        regularizer_configs=[
            tfl.configs.RegularizerConfig(name='calib_hessian', l2=1e-4),
        ],
    ),
    tfl.configs.FeatureConfig(
        name='fbs',
        # Partial monotonicity: output(0) <= output(1)
        monotonicity=[(0, 1)],
    ),
    tfl.configs.FeatureConfig(
        name='trestbps',
        pwl_calibration_num_keypoints=5,
        monotonicity='decreasing',
    ),
    tfl.configs.FeatureConfig(
        name='thalach',
        pwl_calibration_num_keypoints=5,
        monotonicity='decreasing',
    ),
    tfl.configs.FeatureConfig(
        name='restecg',
        # Partial monotonicity: output(0) <= output(1), output(0) <= output(2)
        monotonicity=[(0, 1), (0, 2)],
    ),
    tfl.configs.FeatureConfig(
        name='exang',
        # Partial monotonicity: output(0) <= output(1)
        monotonicity=[(0, 1)],
    ),
    tfl.configs.FeatureConfig(
        name='oldpeak',
        pwl_calibration_num_keypoints=5,
        monotonicity='increasing',
    ),
    tfl.configs.FeatureConfig(
        name='slope',
        # Partial monotonicity: output(0) <= output(1), output(1) <= output(2)
        monotonicity=[(0, 1), (1, 2)],
    ),
    tfl.configs.FeatureConfig(
        name='ca',
        pwl_calibration_num_keypoints=4,
        monotonicity='increasing',
    ),
    tfl.configs.FeatureConfig(
        name='thal',
        # Partial monotonicity:
        # output(normal) <= output(fixed)
        # output(normal) <= output(reversible)        
        monotonicity=[('normal', 'fixed'), ('normal', 'reversible')],
    ),
]

Modelo lineal calibrado

Para construir un TFL enlatados estimador, construir una configuración de modelo de tfl.configs . Un modelo lineal calibrado se construye utilizando tfl.configs.CalibratedLinearConfig . Aplica una calibración categórica y lineal por partes en las entidades de entrada, seguida de una combinación lineal y una calibración lineal por partes de salida opcional. Cuando se usa la calibración de salida o cuando se especifican los límites de salida, la capa lineal aplicará un promedio ponderado en las entradas calibradas.

Este ejemplo crea un modelo lineal calibrado en las primeras 5 características. Utilizamos tfl.visualization para trazar el gráfico modelo con las parcelas de calibrador.

# Model config defines the model structure for the estimator.
model_config = tfl.configs.CalibratedLinearConfig(
    feature_configs=feature_configs,
    use_bias=True,
    output_calibration=True,
    regularizer_configs=[
        # Regularizer for the output calibrator.
        tfl.configs.RegularizerConfig(name='output_calib_hessian', l2=1e-4),
    ])
# A CannedClassifier is constructed from the given model config.
estimator = tfl.estimators.CannedClassifier(
    feature_columns=feature_columns[:5],
    model_config=model_config,
    feature_analysis_input_fn=feature_analysis_input_fn,
    optimizer=tf.keras.optimizers.Adam(LEARNING_RATE),
    config=tf.estimator.RunConfig(tf_random_seed=42))
estimator.train(input_fn=train_input_fn)
results = estimator.evaluate(input_fn=test_input_fn)
print('Calibrated linear test AUC: {}'.format(results['auc']))
saved_model_path = estimator.export_saved_model(estimator.model_dir,
                                                serving_input_fn)
model_graph = tfl.estimators.get_model_graph(saved_model_path)
tfl.visualization.draw_model_graph(model_graph)
2021-09-30 20:54:06.660239: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
Calibrated linear test AUC: 0.834586501121521

png

Modelo de celosía calibrado

Un modelo de celosía calibrado se construye utilizando tfl.configs.CalibratedLatticeConfig . Un modelo de celosía calibrado aplica una calibración categórica y lineal por partes en las entidades de entrada, seguida de un modelo de celosía y una calibración lineal por partes de salida opcional.

Este ejemplo crea un modelo de celosía calibrado en las primeras 5 entidades.

# This is calibrated lattice model: Inputs are calibrated, then combined
# non-linearly using a lattice layer.
model_config = tfl.configs.CalibratedLatticeConfig(
    feature_configs=feature_configs,
    regularizer_configs=[
        # Torsion regularizer applied to the lattice to make it more linear.
        tfl.configs.RegularizerConfig(name='torsion', l2=1e-4),
        # Globally defined calibration regularizer is applied to all features.
        tfl.configs.RegularizerConfig(name='calib_hessian', l2=1e-4),
    ])
# A CannedClassifier is constructed from the given model config.
estimator = tfl.estimators.CannedClassifier(
    feature_columns=feature_columns[:5],
    model_config=model_config,
    feature_analysis_input_fn=feature_analysis_input_fn,
    optimizer=tf.keras.optimizers.Adam(LEARNING_RATE),
    config=tf.estimator.RunConfig(tf_random_seed=42))
estimator.train(input_fn=train_input_fn)
results = estimator.evaluate(input_fn=test_input_fn)
print('Calibrated lattice test AUC: {}'.format(results['auc']))
saved_model_path = estimator.export_saved_model(estimator.model_dir,
                                                serving_input_fn)
model_graph = tfl.estimators.get_model_graph(saved_model_path)
tfl.visualization.draw_model_graph(model_graph)
Calibrated lattice test AUC: 0.8427318930625916

png

Conjunto de celosía calibrado

Cuando la cantidad de entidades es grande, puede usar un modelo de conjunto, que crea múltiples retículas más pequeñas para subconjuntos de las entidades y promedia su salida en lugar de crear una única retícula enorme. Modelos de celosía Ensemble se construyen utilizando tfl.configs.CalibratedLatticeEnsembleConfig . Un modelo de conjunto de celosía calibrado aplica una calibración categórica y lineal por partes en la entidad de entrada, seguida de un conjunto de modelos de celosía y una calibración lineal por partes de salida opcional.

Conjunto de celosía aleatoria

La siguiente configuración del modelo utiliza un subconjunto aleatorio de funciones para cada entramado.

# This is random lattice ensemble model with separate calibration:
# model output is the average output of separately calibrated lattices.
model_config = tfl.configs.CalibratedLatticeEnsembleConfig(
    feature_configs=feature_configs,
    num_lattices=5,
    lattice_rank=3)
# A CannedClassifier is constructed from the given model config.
estimator = tfl.estimators.CannedClassifier(
    feature_columns=feature_columns,
    model_config=model_config,
    feature_analysis_input_fn=feature_analysis_input_fn,
    optimizer=tf.keras.optimizers.Adam(LEARNING_RATE),
    config=tf.estimator.RunConfig(tf_random_seed=42))
estimator.train(input_fn=train_input_fn)
results = estimator.evaluate(input_fn=test_input_fn)
print('Random ensemble test AUC: {}'.format(results['auc']))
saved_model_path = estimator.export_saved_model(estimator.model_dir,
                                                serving_input_fn)
model_graph = tfl.estimators.get_model_graph(saved_model_path)
tfl.visualization.draw_model_graph(model_graph, calibrator_dpi=15)
Random ensemble test AUC: 0.9003759026527405

png

Conjunto de celosía aleatoria de capa RTL

El siguiente modelo de configuración utiliza un tfl.layers.RTL capa que utiliza un subconjunto aleatorio de características para cada retícula. Observamos que tfl.layers.RTL sólo es compatible con las restricciones de monotonicidad y debe tener el mismo tamaño de celosía para todas las características y ninguna regularización por cada función. Tenga en cuenta que el uso de un tfl.layers.RTL capa le permite escalar a conjuntos mucho más grandes que el uso de distintos tfl.layers.Lattice casos.

# Make sure our feature configs have the same lattice size, no per-feature
# regularization, and only monotonicity constraints.
rtl_layer_feature_configs = copy.deepcopy(feature_configs)
for feature_config in rtl_layer_feature_configs:
  feature_config.lattice_size = 2
  feature_config.unimodality = 'none'
  feature_config.reflects_trust_in = None
  feature_config.dominates = None
  feature_config.regularizer_configs = None
# This is RTL layer ensemble model with separate calibration:
# model output is the average output of separately calibrated lattices.
model_config = tfl.configs.CalibratedLatticeEnsembleConfig(
    lattices='rtl_layer',
    feature_configs=rtl_layer_feature_configs,
    num_lattices=5,
    lattice_rank=3)
# A CannedClassifier is constructed from the given model config.
estimator = tfl.estimators.CannedClassifier(
    feature_columns=feature_columns,
    model_config=model_config,
    feature_analysis_input_fn=feature_analysis_input_fn,
    optimizer=tf.keras.optimizers.Adam(LEARNING_RATE),
    config=tf.estimator.RunConfig(tf_random_seed=42))
estimator.train(input_fn=train_input_fn)
results = estimator.evaluate(input_fn=test_input_fn)
print('Random ensemble test AUC: {}'.format(results['auc']))
saved_model_path = estimator.export_saved_model(estimator.model_dir,
                                                serving_input_fn)
model_graph = tfl.estimators.get_model_graph(saved_model_path)
tfl.visualization.draw_model_graph(model_graph, calibrator_dpi=15)
Random ensemble test AUC: 0.8903509378433228

png

Conjunto de celosía de cristales

TFL también proporciona un algoritmo heurístico disposición característica, llamada cristales . Los cristales algoritmo primeros trenes un modelo prefitting que las estimaciones por parejas las interacciones entre características. A continuación, organiza el conjunto final de forma que las entidades con más interacciones no lineales estén en las mismas redes.

Para los modelos de Cristales, también tendrá que proporcionar una prefitting_input_fn que se utiliza para entrenar el modelo prefitting, como se describió anteriormente. El modelo de ajuste previo no necesita estar completamente entrenado, por lo que unas pocas épocas deberían ser suficientes.

prefitting_input_fn = tf.compat.v1.estimator.inputs.pandas_input_fn(
    x=train_x,
    y=train_y,
    shuffle=False,
    batch_size=BATCH_SIZE,
    num_epochs=PREFITTING_NUM_EPOCHS,
    num_threads=1)

A continuación, puede crear un modelo Crystal mediante el establecimiento de lattice='crystals' en el modelo de configuración.

# This is Crystals ensemble model with separate calibration: model output is
# the average output of separately calibrated lattices.
model_config = tfl.configs.CalibratedLatticeEnsembleConfig(
    feature_configs=feature_configs,
    lattices='crystals',
    num_lattices=5,
    lattice_rank=3)
# A CannedClassifier is constructed from the given model config.
estimator = tfl.estimators.CannedClassifier(
    feature_columns=feature_columns,
    model_config=model_config,
    feature_analysis_input_fn=feature_analysis_input_fn,
    # prefitting_input_fn is required to train the prefitting model.
    prefitting_input_fn=prefitting_input_fn,
    optimizer=tf.keras.optimizers.Adam(LEARNING_RATE),
    prefitting_optimizer=tf.keras.optimizers.Adam(LEARNING_RATE),
    config=tf.estimator.RunConfig(tf_random_seed=42))
estimator.train(input_fn=train_input_fn)
results = estimator.evaluate(input_fn=test_input_fn)
print('Crystals ensemble test AUC: {}'.format(results['auc']))
saved_model_path = estimator.export_saved_model(estimator.model_dir,
                                                serving_input_fn)
model_graph = tfl.estimators.get_model_graph(saved_model_path)
tfl.visualization.draw_model_graph(model_graph, calibrator_dpi=15)
Crystals ensemble test AUC: 0.8840851783752441

png

Puede representar calibradores de función con más detalles utilizando el tfl.visualization módulo.

_ = tfl.visualization.plot_feature_calibrator(model_graph, "age")
_ = tfl.visualization.plot_feature_calibrator(model_graph, "restecg")

png

png