Opérations
mhlo.abs (mhlo::AbsOp)
Fonctionnement des abdominaux
Syntaxe:
operation ::= `mhlo.abs` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Effectue une opération abs élément par élément sur le tenseur operand et produit un tenseur result .
Voir : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#abs
Exemple:
%result = mhlo.abs %operand : tensor<3xi32>
Traits : AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces : ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effets : MemoryEffects::Effect{}
Opérandes:
| Opérande | Description |
|---|---|
operand | Tenseur classé de type entier sans signe 2/4/8/16/32/64 bits ou flottant 4/6/8/16/32/64 bits ou complexe avec éléments flottants 32/64 bits ou entier signé quantifié uniforme 2/4/8/16/32 bits ou entier signé quantifié uniforme par axe 2/4/8/16/32 bits ou entier non signé quantifié uniforme 2/4/8/16/32 bits ou entier non signé quantifié uniforme par axe 2/4/8/16/32 bits |
Résultats:
| Résultat | Description |
|---|---|
result | Tenseur classé de valeurs entières sans signe 2/4/8/16/32/64 bits ou de valeurs flottantes 4/6/8/16/32/64 bits ou de valeurs entières signées quantifiées uniformément 2/4/8/16/32 bits ou de valeurs entières signées quantifiées uniformément par axe 2/4/8/16/32 bits ou de valeurs entières non signées quantifiées uniformément par axe 2/4/8/16/32 bits ou de valeurs entières non signées quantifiées uniformément par axe 2/4/8/16/32 bits |
mhlo.acos (mhlo::AcosOp)
Opération Acos
Syntaxe:
operation ::= `mhlo.acos` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Exécute une opération acos élément par élément sur le tenseur operand et produit un tenseur result .
Exemple:
%result = mhlo.acos %operand : tensor<2x2xf32>
Traits : CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces : InferShapedTypeOpInterface , InferTypeOpInterface
Opérandes:
| Opérande | Description |
|---|---|
operand | tenseur de type flottant ou complexe 4/6/8/16/32/64 bits avec des valeurs d'éléments flottants 32/64 bits |
Résultats:
| Résultat | Description |
|---|---|
result | tenseur de type flottant ou complexe 4/6/8/16/32/64 bits avec des valeurs d'éléments flottants 32/64 bits |
mhlo.acosh (mhlo::AcoshOp)
Opération Acosh
Syntaxe:
operation ::= `mhlo.acosh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Exécute une opération acosh élément par élément sur le tenseur operand et produit un tenseur result .
Exemple:
%result = mhlo.acosh %operand : tensor<2x2xf32>
Traits : CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces : InferShapedTypeOpInterface , InferTypeOpInterface
Opérandes:
| Opérande | Description |
|---|---|
operand | tenseur de type flottant ou complexe 4/6/8/16/32/64 bits avec des valeurs d'éléments flottants 32/64 bits |
Résultats:
| Résultat | Description |
|---|---|
result | tenseur de type flottant ou complexe 4/6/8/16/32/64 bits avec des valeurs d'éléments flottants 32/64 bits |
mhlo.add (mhlo::AddOp)
Opération d'ajout
Syntaxe:
operation ::= `mhlo.add` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Effectue l'addition élément par élément de deux tenseurs lhs et rhs et produit un tenseur result .
Voir : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#add
Exemple:
%result = mhlo.add %lhs, %rhs : tensor<2x2xi32>
Traits : AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces : ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effets : MemoryEffects::Effect{}
Opérandes:
| Opérande | Description |
|---|---|
lhs | Tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe |
rhs | Tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe |
Résultats:
| Résultat | Description |
|---|---|
result | Tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe |
mhlo.add_dependency (mhlo::AddDependencyOp)
Opération AddDependency
Syntaxe:
operation ::= `mhlo.add_dependency` operands attr-dict `:` functional-type(operands, results)
Cette opération est privée pour le compilateur XLA, elle n'a donc pas encore de spécification.
De manière informelle, cette opération comporte deux opérandes : un opérande de données et un jeton. Le résultat de l'opération est l'opérande de données. Utilisée avec AfterAll, cette opération permet de classer les opérations sans effets secondaires (celles qui ne produisent pas de valeurs de jeton).
Exemple:
%1 = mhlo.add_dependency %arg0, %0 : (tensor<3x4xf32>, !mhlo.token) -> tensor<3x4xf32>
Traits : AlwaysSpeculatableImplTrait
Interfaces : ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effets : MemoryEffects::Effect{}
Opérandes:
| Opérande | Description |
|---|---|
operand | Tenseur classé de type float ou bool ou entier 4/6/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou tenseur classé de valeurs entières quantifiées par axe ou jeton ou jeton stablehlo |
token | jeton ou jeton stablehlo |
Résultats:
| Résultat | Description |
|---|---|
output | Tenseur classé de type float ou bool ou entier 4/6/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou tenseur classé de valeurs entières quantifiées par axe ou jeton ou jeton stablehlo |
mhlo.after_all (mhlo::AfterAllOp)
Opération AfterAll
Syntaxe:
operation ::= `mhlo.after_all` $inputs attr-dict
`:` custom<VariadicSameOperandsAndResultType>(ref($inputs), type($inputs), type($result))
Garantit que les opérations produisant les inputs sont exécutées avant toute opération qui dépend du result .
Voir : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
Exemple:
%result = mhlo.after_all %input0, %input1 : !mhlo.token
Traits : AlwaysSpeculatableImplTrait
Interfaces : ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effets : MemoryEffects::Effect{}
Opérandes:
| Opérande | Description |
|---|---|
inputs | variadique du jeton |
Résultats:
| Résultat | Description |
|---|---|
result | jeton |
mhlo.all_gather (mhlo::AllGatherOp)
Opération AllGather
Au sein de chaque groupe de processus de la grille, concatène les valeurs du tenseur d'opérandes de chaque processus selon all_gather_dim et produit un tenseur de résultats. Le computation est appliqué séparément pour chaque opérande de operands , produisant un résultat par opérande.
Voir : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_gather
Exemple:
%result = "mhlo.all_gather"(%operand) {
all_gather_dim = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>,
// use_global_device_ids = false
} : (tensor<2x2xf32>) -> tensor<2x4xf32>
Traits : SameOperandsAndResultElementType
Attributs:
| Attribut | Type MLIR | Description |
|---|---|---|
all_gather_dim | ::mlir::IntegerAttr | Attribut entier sans signe de 64 bits dont la valeur est non négative |
replica_groups | ::mlir::DenseIntElementsAttr | Attribut d'éléments entiers sans signe 64 bits |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | deux entiers de 64 bits « handle » et « type » |
use_global_device_ids | ::mlir::UnitAttr | attribut d'unité |
Opérandes:
| Opérande | Description |
|---|---|
operands | variadique d'un tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec des éléments float 32/64 bits ou des valeurs entières quantifiées par tenseur ou par axe |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | variadique d'un tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec des éléments float 32/64 bits ou des valeurs entières quantifiées par tenseur ou par axe |
mhlo.all_reduce (mhlo::AllReduceOp)
Opération AllReduce
Au sein de chaque groupe de processus de la grille de processus, un computation de fonction de réduction est appliqué aux valeurs d'un tenseur d'opérandes de chaque processus et produit un tenseur de résultats. Le computation est appliqué séparément pour chaque opérande de operands , produisant un résultat par opérande.
Voir : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
Exemple:
%result = "mhlo.all_reduce"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg1, %arg2 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<4xf32>) -> tensor<4xf32>
Traits : InferTensorType , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces : InferShapedTypeOpInterface , InferTypeOpInterface
Attributs:
| Attribut | Type MLIR | Description |
|---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | Attribut d'éléments entiers sans signe 64 bits |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | deux entiers de 64 bits « handle » et « type » |
use_global_device_ids | ::mlir::UnitAttr | attribut d'unité |
Opérandes:
| Opérande | Description |
|---|---|
operands | variadique d'un tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec des éléments float 32/64 bits ou des valeurs entières quantifiées par tenseur ou par axe |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | variadique d'un tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec des éléments float 32/64 bits ou des valeurs entières quantifiées par tenseur ou par axe |
mhlo.all_to_all (mhlo::AllToAllOp)
Opération AllToAll
Dans chaque groupe de processus de la grille de processus, divise les valeurs du tenseur d' operand le long split_dimension en parties, disperse les parties divisées entre les processus, concatène les parties dispersées le long concat_dimension et produit un tenseur result .
Voir : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_to_all
Exemple:
%result = "mhlo.all_to_all"(%operand) {
split_dimension = 1 : i64,
concat_dimension = 0 : i64,
split_count = 2 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<2x4xf32>) -> tensor<4x2xf32>
Traits : AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsElementType , SameOperandsShape , SameVariadicOperandSize
Interfaces : ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effets : MemoryEffects::Effect{}
Attributs:
| Attribut | Type MLIR | Description |
|---|---|---|
split_dimension | ::mlir::IntegerAttr | Attribut entier sans signe de 64 bits dont la valeur est non négative |
concat_dimension | ::mlir::IntegerAttr | Attribut entier sans signe de 64 bits dont la valeur est non négative |
split_count | ::mlir::IntegerAttr | Attribut entier sans signe de 64 bits dont la valeur est positive |
replica_groups | ::mlir::DenseIntElementsAttr | Attribut d'éléments entiers sans signe 64 bits |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | deux entiers de 64 bits « handle » et « type » |
Opérandes:
| Opérande | Description |
|---|---|
operand | variadique d'un tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec des éléments float 32/64 bits ou des valeurs entières quantifiées par tenseur ou par axe |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | variadique d'un tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec des éléments float 32/64 bits ou des valeurs entières quantifiées par tenseur ou par axe |
mhlo.and (mhlo::AndOp)
Et l'opération
Syntaxe:
operation ::= `mhlo.and` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Effectue un ET élément par élément de deux tenseurs lhs et rhs et produit un tenseur result
Voir : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#and
Exemple:
%result = mhlo.and %lhs, %rhs : tensor<2x2xi32>
Traits : AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces : ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effets : MemoryEffects::Effect{}
Opérandes:
| Opérande | Description |
|---|---|
lhs | tenseur classé de valeurs booléennes ou entières de 2/4/8/16/32/64 bits |
rhs | tenseur classé de valeurs booléennes ou entières de 2/4/8/16/32/64 bits |
Résultats:
| Résultat | Description |
|---|---|
result | Tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe |
mhlo.asin (mhlo::AsinOp)
Opération Asin
Syntaxe:
operation ::= `mhlo.asin` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Effectue une opération asin élément par élément sur le tenseur operand et produit un tenseur result .
Exemple:
%result = mhlo.asin %operand : tensor<2x2xf32>
Traits : CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces : InferShapedTypeOpInterface , InferTypeOpInterface
Opérandes:
| Opérande | Description |
|---|---|
operand | tenseur de type flottant ou complexe 4/6/8/16/32/64 bits avec des valeurs d'éléments flottants 32/64 bits |
Résultats:
| Résultat | Description |
|---|---|
result | tenseur de type flottant ou complexe 4/6/8/16/32/64 bits avec des valeurs d'éléments flottants 32/64 bits |
mhlo.asinh (mhlo::AsinhOp)
Opération Asinh
Syntaxe:
operation ::= `mhlo.asinh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Exécute une opération asinh élément par élément sur le tenseur operand et produit un tenseur result .
Exemple:
%result = mhlo.asinh %operand : tensor<2x2xf32>
Traits : CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces : InferShapedTypeOpInterface , InferTypeOpInterface
Opérandes:
| Opérande | Description |
|---|---|
operand | tenseur de type flottant ou complexe 4/6/8/16/32/64 bits avec des valeurs d'éléments flottants 32/64 bits |
Résultats:
| Résultat | Description |
|---|---|
result | tenseur de type flottant ou complexe 4/6/8/16/32/64 bits avec des valeurs d'éléments flottants 32/64 bits |
mhlo.async_done (mhlo::AsyncDoneOp)
Opération AsyncDone
Cette opération est privée pour le compilateur XLA, elle n'a donc pas encore de spécification.
De manière informelle, cette opération se bloque jusqu'à la fin d'un calcul asynchrone. Elle renvoie le résultat final du calcul asynchrone.
Consultez la documentation d'AsyncStart pour plus d'informations.
Interfaces : InferTypeOpInterface
Opérandes:
| Opérande | Description |
|---|---|
bundle | async_bundle avec n'importe quelle combinaison de tenseurs classés de type float ou bool 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec des éléments float 32/64 bits ou des valeurs quantifiées entières par tenseur ou par axe ou des valeurs de jeton ou de jeton stablehlo |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | variadique de tenseur classé de type float ou bool 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe ou jeton ou stablehlo jeton ou tuple imbriqué avec toute combinaison de tenseur classé de type float ou bool 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou memref de type float ou bool 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou tenseur classé de type entier par axe quantifié valeurs ou valeurs symboliques |
mhlo.async_start (mhlo::AsyncStartOp)
Opération AsyncStart
Cette opération est privée pour le compilateur XLA, elle n'a donc pas encore de spécification.
De manière informelle, cette opération déclenche un calcul asynchrone.
Ceci est utilisé lorsque des fonctions contiennent à la fois des attentes asynchrones (comme les DMA) et des calculs sur thread. Par exemple, une fonction peut être composée d'un calcul, d'un DMA, d'un autre calcul, d'un second DMA et d'un calcul final. Ceci est représenté par un async_start suivi d'un async_update et d'un async_done. L'async_start effectue le premier calcul sur thread, puis démarre le DMA. L'async_update attend la fin du DMA s'il n'est pas encore terminé, puis exécute le second calcul de la fonction et démarre le second DMA. Enfin, l'async_done attend ce dernier DMA, puis exécute le dernier calcul à exécuter sur thread et renvoie le résultat de ce dernier calcul.
operands sont transmis directement au calcul. called_computation désigne la fonction qui sera exécutée de manière asynchrone. execution_thread désigne le nom du thread dans lequel elle sera exécutée. Le thread principal est appelé « main ». Tous les threads ont un nom.
Cela renvoie tous les états nécessaires entre les opérations asynchrones. Après l'affectation du tampon, les valeurs de retour représentent l'espace nécessaire pour stocker les entrées, les résultats et les blocs-notes nécessaires ou modifiés par l'opération asynchrone.
Attributs:
| Attribut | Type MLIR | Description |
|---|---|---|
called_computation | ::mlir::FlatSymbolRefAttr | attribut de référence de symbole plat |
execution_thread | ::mlir::StringAttr | attribut de chaîne |
Opérandes:
| Opérande | Description |
|---|---|
inputs | variadique de tenseur classé de type float ou bool 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe ou jeton ou stablehlo jeton ou tuple imbriqué avec toute combinaison de tenseur classé de type float ou bool 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou memref de type float ou bool 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou tenseur classé de type entier par axe quantifié valeurs ou valeurs symboliques |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | async_bundle avec n'importe quelle combinaison de tenseurs classés de type float ou bool 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec des éléments float 32/64 bits ou des valeurs quantifiées entières par tenseur ou par axe ou des valeurs de jeton ou de jeton stablehlo |
mhlo.async_update (mhlo::AsyncUpdateOp)
Opération AsyncUpdate
Cette opération est privée pour le compilateur XLA, elle n'a donc pas encore de spécification.
De manière informelle, cette opération bloque un calcul asynchrone jusqu'à une barrière de synchronisation. Elle renvoie bundle après l'opération.
Consultez la documentation d'AsyncStart pour plus d'informations.
Interfaces : InferTypeOpInterface
Opérandes:
| Opérande | Description |
|---|---|
bundle | async_bundle avec n'importe quelle combinaison de tenseurs classés de type float ou bool 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec des éléments float 32/64 bits ou des valeurs quantifiées entières par tenseur ou par axe ou des valeurs de jeton ou de jeton stablehlo |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | async_bundle avec n'importe quelle combinaison de tenseurs classés de type float ou bool 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec des éléments float 32/64 bits ou des valeurs quantifiées entières par tenseur ou par axe ou des valeurs de jeton ou de jeton stablehlo |
mhlo.atan2 (mhlo::Atan2Op)
Fonctionnement d'Atan2
Syntaxe:
operation ::= `mhlo.atan2` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Exécute l'opération atan2 élément par élément sur le tenseur lhs et rhs et produit un tenseur result .
Voir : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#atan2
Exemple:
%result = mhlo.atan2 %lhs, %rhs : tensor<3xf32>
Traits : AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces : ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effets : MemoryEffects::Effect{}
Opérandes:
| Opérande | Description |
|---|---|
lhs | Tenseur classé de type flottant ou complexe 4/6/8/16/32/64 bits avec éléments flottants 32/64 bits ou valeurs quantifiées entières par tenseur |
rhs | Tenseur classé de type flottant ou complexe 4/6/8/16/32/64 bits avec éléments flottants 32/64 bits ou valeurs quantifiées entières par tenseur |
Résultats:
| Résultat | Description |
|---|---|
result | Tenseur classé de type flottant ou complexe 4/6/8/16/32/64 bits avec éléments flottants 32/64 bits ou valeurs quantifiées entières par tenseur |
mhlo.atanh (mhlo::AtanhOp)
Opération Atanh
Syntaxe:
operation ::= `mhlo.atanh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Exécute une opération atanh élément par élément sur le tenseur operand et produit un tenseur result .
Exemple:
%result = mhlo.atanh %operand : tensor<2x2xf32>
Traits : CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces : InferShapedTypeOpInterface , InferTypeOpInterface
Opérandes:
| Opérande | Description |
|---|---|
operand | tenseur de type flottant ou complexe 4/6/8/16/32/64 bits avec des valeurs d'éléments flottants 32/64 bits |
Résultats:
| Résultat | Description |
|---|---|
result | tenseur de type flottant ou complexe 4/6/8/16/32/64 bits avec des valeurs d'éléments flottants 32/64 bits |
mhlo.batch_norm_grad (mhlo :: BatchNormGradOp)
Opération BatchNormGrad
Calcule les gradients de plusieurs entrées de BatchNormTrainingOp rétropropagées à partir de grad_output et produit les tenseurs grad_operand , grad_scale et grad_offset .
Voir : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_grad
Exemple:
%grad_operand, %grad_scale, %grad_offset =
"mhlo.batch_norm_grad"(%operand, %scale, %mean, %variance, %grad_output) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>,
tensor<2x2x2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
Traits : AlwaysSpeculatableImplTrait , InferTensorType
Interfaces : ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effets : MemoryEffects::Effect{}
Attributs:
| Attribut | Type MLIR | Description |
|---|---|---|
epsilon | ::mlir::FloatAttr | Attribut flottant 32 bits |
feature_index | ::mlir::IntegerAttr | Attribut entier sans signe de 64 bits dont la valeur est non négative |
Opérandes:
| Opérande | Description |
|---|---|
operand | tenseur classé de valeurs flottantes 4/6/8/16/32/64 bits |
scale | Tenseur 1D de valeurs flottantes 4/6/8/16/32/64 bits |
mean | Tenseur 1D de valeurs flottantes 4/6/8/16/32/64 bits |
variance | Tenseur 1D de valeurs flottantes 4/6/8/16/32/64 bits |
grad_output | tenseur classé de valeurs flottantes 4/6/8/16/32/64 bits |
Résultats:
| Résultat | Description |
|---|---|
grad_operand | tenseur classé de valeurs flottantes 4/6/8/16/32/64 bits |
grad_scale | Tenseur 1D de valeurs flottantes 4/6/8/16/32/64 bits |
grad_offset | Tenseur 1D de valeurs flottantes 4/6/8/16/32/64 bits |
mhlo.batch_norm_inference (mhlo::BatchNormInferenceOp)
Opération BatchNormInference
Normalise le tenseur operand sur toutes les dimensions à l'exception de la dimension feature_index et produit un tenseur result .
Voir : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_inference
Exemple:
%result = "mhlo.batch_norm_inference"(%operand, %scale, %offset, %mean, %variance) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>) -> tensor<2x2x2xf32>
Traits : AlwaysSpeculatableImplTrait , InferTensorType
Interfaces : ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effets : MemoryEffects::Effect{}
Attributs:
| Attribut | Type MLIR | Description |
|---|---|---|
epsilon | ::mlir::FloatAttr | Attribut flottant 32 bits |
feature_index | ::mlir::IntegerAttr | Attribut entier sans signe de 64 bits dont la valeur est non négative |
Opérandes:
| Opérande | Description |
|---|---|
operand | tenseur classé de valeurs flottantes 4/6/8/16/32/64 bits |
scale | Tenseur 1D de valeurs flottantes 4/6/8/16/32/64 bits |
offset | Tenseur 1D de valeurs flottantes 4/6/8/16/32/64 bits |
mean | Tenseur 1D de valeurs flottantes 4/6/8/16/32/64 bits |
variance | Tenseur 1D de valeurs flottantes 4/6/8/16/32/64 bits |
Résultats:
| Résultat | Description |
|---|---|
result | tenseur classé de valeurs flottantes 4/6/8/16/32/64 bits |
mhlo.batch_norm_training (mhlo::BatchNormTrainingOp)
Opération BatchNormTraining
Calcule la moyenne et la variance sur les dimensions de lot et spatiales et normalise le tenseur operand , pour chaque fonctionnalité de la dimension feature_index et produit des tenseurs output , batch_mean et batch_var .
Voir : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_training
Exemple:
%output, %batch_mean, %batch_var = "mhlo.batch_norm_training"(%operand, %scale, %offset) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
Traits : AlwaysSpeculatableImplTrait , InferTensorType
Interfaces : ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effets : MemoryEffects::Effect{}
Attributs:
| Attribut | Type MLIR | Description |
|---|---|---|
epsilon | ::mlir::FloatAttr | Attribut flottant 32 bits |
feature_index | ::mlir::IntegerAttr | Attribut entier sans signe de 64 bits dont la valeur est non négative |
Opérandes:
| Opérande | Description |
|---|---|
operand | tenseur classé de valeurs flottantes 4/6/8/16/32/64 bits |
scale | Tenseur 1D de valeurs flottantes 4/6/8/16/32/64 bits |
offset | Tenseur 1D de valeurs flottantes 4/6/8/16/32/64 bits |
Résultats:
| Résultat | Description |
|---|---|
output | tenseur classé de valeurs flottantes 4/6/8/16/32/64 bits |
batch_mean | Tenseur 1D de valeurs flottantes 4/6/8/16/32/64 bits |
batch_var | Tenseur 1D de valeurs flottantes 4/6/8/16/32/64 bits |
mhlo.bitcast (mhlo::BitcastOp)
Opération Bitcast
Syntaxe:
operation ::= `mhlo.bitcast` operands attr-dict `:` functional-type(operands, results)
Cette opération est privée pour le compilateur XLA, elle n'a donc pas encore de spécification.
De manière informelle, cette opération modifie la forme de l’entrée de telle sorte que la disposition physique des éléments reste inchangée.
Cette opération nécessite des informations de mise en page pour donner un sens à la « disposition physique des éléments », et la prise en charge de la mise en page dans MHLO est actuellement en cours de développement.
Exemple:
%0 = mhlo.bitcast %arg0 : (tensor<3x4xf32>) -> tensor<3x4x1xf32>
Traits : AlwaysSpeculatableImplTrait
Interfaces : ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effets : MemoryEffects::Effect{}
Opérandes:
| Opérande | Description |
|---|---|
operand | Tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | Tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe |
mhlo.bitcast_convert (mhlo::BitcastConvertOp)
Opération BitcastConvert
Syntaxe:
operation ::= `mhlo.bitcast_convert` operands attr-dict `:` functional-type(operands, results)
Exécute une opération de conversion de bits sur le tenseur operand et produit un tenseur result où les bits de l'ensemble du tenseur operand sont réinterprétés à l'aide du type du tenseur result .
Voir : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#bitcast_convert
Exemple:
%result = mhlo.bitcast_convert %operand : (tensor<2xf32>) -> tensor<2x4xi8>
Traits : AlwaysSpeculatableImplTrait
Interfaces : ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effets : MemoryEffects::Effect{}
Opérandes:
| Opérande | Description |
|---|---|
operand | Tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | Tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe |
mhlo.broadcast (mhlo::BroadcastOp)
Opération de diffusion
Cette opération est sur le point de quitter StableHLO, elle n'est donc pas incluse dans la spécification : https://github.com/openxla/stablehlo/issues/3
De manière informelle, cette opération fait la même chose que la diffusion de XLA : https://www.tensorflow.org/xla/operation_semantics#broadcast
Exemple:
%result = mhlo.broadcast %operand, sizes = [1, 2] : (tensor<3xi32>) -> tensor<1x2x3xi32>
Traits : AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType
Interfaces : ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effets : MemoryEffects::Effect{}
Attributs:
| Attribut | Type MLIR | Description |
|---|---|---|
broadcast_sizes | ::mlir::DenseIntElementsAttr | Attribut d'éléments entiers sans signe 64 bits |
Opérandes:
| Opérande | Description |
|---|---|
operand | Tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | Tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe |
mhlo.broadcast_in_dim (mhlo :: BroadcastInDimOp)
Fonctionnement BroadcastInDim
Étend les dimensions et/ou le rang d'un tenseur d'entrée en dupliquant les données dans le tenseur operand et produit un tenseur result .
Voir : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#broadcast_in_dim
Exemple:
%result = mhlo.broadcast_in_dim %operand, dims = [2, 1] : (tensor<1x3xi32>) -> tensor<2x3x2xi32>
Traits : AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType
Interfaces : ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effets : MemoryEffects::Effect{}
Attributs:
| Attribut | Type MLIR | Description |
|---|---|---|
broadcast_dimensions | ::mlir::DenseIntElementsAttr | Attribut d'éléments entiers sans signe 64 bits |
Opérandes:
| Opérande | Description |
|---|---|
operand | Tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | Tenseur de forme statique ou à dimension bornée unique de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe |
mhlo.case (mhlo::CaseOp)
Opération de cas
Produit la sortie de l'exécution d'une seule function à partir branches en fonction de la valeur de index .
Voir : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#case
Exemple:
%result0, %result1 = "mhlo.case"(%index) ({
mhlo.return %result_branch0, %result_branch0 : tensor<2xi64>, tensor<2xi64>
}, {
mhlo.return %result_branch1, %result_branch1 : tensor<2xi64>, tensor<2xi64>
}) : (tensor<i32>) -> (tensor<2xi64>, tensor<2xi64>)
Traits : RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces : InferTypeOpInterface
Opérandes:
| Opérande | Description |
|---|---|
index | tenseur de valeurs entières sans signe de 32 bits |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | variadique de tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou tenseur classé de valeurs entières quantifiées par axe ou jeton |
mhlo.cbrt (mhlo::CbrtOp)
Opération CBRT
Syntaxe:
operation ::= `mhlo.cbrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Effectue une opération de racine cubique élément par élément sur le tenseur operand et produit un tenseur result .
Voir : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cbrt
Exemple:
%result = mhlo.cbrt %operand : tensor<4xf32>
Traits : AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces : ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effets : MemoryEffects::Effect{}
Attributs:
| Attribut | Type MLIR | Description |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | La précision demandée pour les opérations unaires. |
Opérandes:
| Opérande | Description |
|---|---|
operand | Tenseur classé de type flottant ou complexe 4/6/8/16/32/64 bits avec éléments flottants 32/64 bits ou valeurs quantifiées entières par tenseur |
Résultats:
| Résultat | Description |
|---|---|
result | Tenseur classé de type flottant ou complexe 4/6/8/16/32/64 bits avec éléments flottants 32/64 bits ou valeurs quantifiées entières par tenseur |
mhlo.ceil (mhlo::CeilOp)
Opération de plafond
Syntaxe:
operation ::= `mhlo.ceil` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Effectue une cellule élément par élément du tenseur operand et produit un tenseur result .
Voir : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#ceil
Exemple:
%result = mhlo.ceil %operand : tensor<5xf32>
Traits : AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces : ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effets : MemoryEffects::Effect{}
Opérandes:
| Opérande | Description |
|---|---|
operand | tenseur classé de valeurs flottantes ou entières quantifiées par tenseur de 4/6/8/16/32/64 bits |
Résultats:
| Résultat | Description |
|---|---|
result | tenseur classé de valeurs flottantes ou entières quantifiées par tenseur de 4/6/8/16/32/64 bits |
mhlo.cholesky (mhlo::CholeskyOp)
Opération Cholesky
Calcule la décomposition de Cholesky d'un lot de matrices.
Voir : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cholesky
Exemple:
%result = mhlo.cholesky %a, lower = true : tensor<3x3xf32>
Traits : AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType
Interfaces : ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effets : MemoryEffects::Effect{}
Attributs:
| Attribut | Type MLIR | Description |
|---|---|---|
lower | ::mlir::BoolAttr | attribut booléen |
Opérandes:
| Opérande | Description |
|---|---|
a | tenseur classé de type flottant ou complexe 4/6/8/16/32/64 bits avec des valeurs d'éléments flottants 32/64 bits |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | tenseur classé de type flottant ou complexe 4/6/8/16/32/64 bits avec des valeurs d'éléments flottants 32/64 bits |
mhlo.clamp (mhlo::ClampOp)
Fonctionnement de la pince
Syntaxe:
operation ::= `mhlo.clamp` $min `,` $operand `,` $max attr-dict
`:` custom<SameOperandsAndResultType>(type($min), type($operand), type($max), type($result))
Fixe chaque élément du tenseur operand entre une valeur minimale et maximale et produit un tenseur result .
Voir : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#clamp
Exemple:
%result = mhlo.clamp %min, %operand, %max : tensor<3xi32>
Traits : AlwaysSpeculatableImplTrait , HLO_BroadcastingElementwise , InferTensorType , SameOperandsAndResultElementType
Interfaces : ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effets : MemoryEffects::Effect{}
Opérandes:
| Opérande | Description |
|---|---|
min | Tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe |
operand | Tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe |
max | Tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe |
Résultats:
| Résultat | Description |
|---|---|
result | Tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe |
mhlo.collective_broadcast (mhlo::CollectiveBroadcastOp)
Opération de diffusion collective
Dans chaque groupe de processus de la grille de processus, envoyez la valeur du tenseur d' operand du processus source aux processus cibles et produisez un tenseur result .
Voir : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_broadcast
Exemple:
%result = "mhlo.collective_broadcast"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<1x2xi64>) -> tensor<1x2xi64>
Traits : CompatibleOperandsAndResultType
Interfaces : InferShapedTypeOpInterface , InferTypeOpInterface
Attributs:
| Attribut | Type MLIR | Description |
|---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | Attribut d'éléments entiers sans signe 64 bits |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | deux entiers de 64 bits « handle » et « type » |
Opérandes:
| Opérande | Description |
|---|---|
operand | Tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | Tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe |
mhlo.collective_permute (mhlo::CollectivePermuteOp)
Opération CollectivePermute
Dans chaque groupe de processus de la grille de processus, envoie la valeur du tenseur d' operand du processus source au processus cible et produit un tenseur result .
Voir : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_permute
Exemple:
%result = "mhlo.collective_permute"(%operand) {
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<4x2xf32>) -> tensor<4x2xf32>
Traits : AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType
Interfaces : ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effets : MemoryEffects::Effect{}
Attributs:
| Attribut | Type MLIR | Description |
|---|---|---|
source_target_pairs | ::mlir::DenseIntElementsAttr | Attribut d'éléments entiers sans signe 64 bits |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | deux entiers de 64 bits « handle » et « type » |
Opérandes:
| Opérande | Description |
|---|---|
operand | Tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | Tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe |
mhlo.compare (mhlo :: CompareOp)
Comparer les opérations
Syntaxe:
operation ::= `mhlo.compare` $comparison_direction `,` $lhs `,` $rhs (`,` $compare_type^)?
attr-dict `:` functional-type(operands, results)
Effectue une comparaison élément par élément des tenseurs lhs et rhs selon comparison_direction et compare_type , et produit un tenseur result .
Voir : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#compare
Exemple:
%result = mhlo.compare LT, %lhs, %rhs, FLOAT : (tensor<2xf32>, tensor<2xf32>) -> tensor<2xi1>
Traits : AlwaysSpeculatableImplTrait , Elementwise , InferTensorType , SameOperandsAndResultShape , SameOperandsElementType
Interfaces : ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effets : MemoryEffects::Effect{}
Attributs:
| Attribut | Type MLIR | Description |
|---|---|---|
comparison_direction | ::mlir::mhlo::ComparisonDirectionAttr | Quelle opération de comparaison effectuer. |
compare_type | ::mlir::mhlo::ComparisonTypeAttr | Quel type de comparaison utiliser. |
Opérandes:
| Opérande | Description |
|---|---|
lhs | Tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe |
rhs | Tenseur classé de type float ou booléen 4/6/8/16/32/64 bits ou entier 2/4/8/16/32/64 bits ou complexe avec éléments float 32/64 bits ou valeurs entières quantifiées par tenseur ou par axe |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | tenseur classé de valeurs booléennes |
mhlo.complex (mhlo::ComplexOp)
Opération complexe
Syntaxe:
operation ::= `mhlo.complex` operands attr-dict
`:` custom<ComplexOpType>(type($lhs), type($rhs), type($result))
Effectue une conversion élément par élément en une valeur complexe à partir d'une paire de valeurs réelles et imaginaires, lhs et rhs , et produit un tenseur result .
Voir : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#complex
Exemple:
%result = mhlo.complex %lhs, %rhs : tensor<2xcomplex<f32>>
Traits : AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape , SameOperandsElementType
Interfaces : ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effets : MemoryEffects::Effect{}
Opérandes:
| Opérande | Description |
|---|---|
lhs | tenseur classé de valeurs flottantes 32/64 bits |
rhs | tenseur classé de valeurs flottantes 32/64 bits |
Résultats:
| Résultat | Description |
|---|---|
result | tenseur classé de type complexe avec des valeurs d'éléments flottants 32/64 bits |
mhlo.composite (mhlo::CompositeOp)
Opération composite
Syntaxe:
operation ::= `mhlo.composite` $name $inputs attr-dict `:` functional-type(operands, results)
Encapsulates an operation made up (composed) of other StableHLO operations, taking inputs and composite_attributes and producing results . The semantics of the op are implemented by the decomposition attribute. The composite op can be replaced with its decomposition without changing program semantics. In cases where inlining the decomposition does not provide the same op semantics, prefer using custom_call .
The version field (defaults to 0 ) is used to denote when a composite's semantics change.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#composite
Exemple:
%results = mhlo.composite "my.op" %arg0, %arg1 {
decomposition = @my_op,
composite_attributes = { my_attribute = "my_value" },
version = 1 : i32
} : (tensor<f32>, tensor<f32>) -> tensor<f32>
Interfaces: SymbolUserOpInterface
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
name | ::mlir::StringAttr | string attribute |
composite_attributes | ::mlir::DictionaryAttr | dictionary of named attribute values |
decomposition | ::mlir::FlatSymbolRefAttr | flat symbol reference attribute |
version | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Operands:
| Opérande | Description |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.concatenate (mhlo::ConcatenateOp)
Concatenate operation
Concatenates a variadic number of tensors in inputs along dimension dimension in the same order as the given arguments and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#concatenate
Exemple:
%result = mhlo.concatenate %input0, %input1, dim = 0 : (tensor<3x2xi64>, tensor<1x2xi64>) -> tensor<4x2xi64>
Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
| Opérande | Description |
|---|---|
val | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.constant (mhlo::ConstantOp)
Constant operation
Produces an output tensor from a constant value .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#constant
Exemple:
%output = mhlo.constant dense<[[0.0, 1.0], [2.0, 3.0]]> : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , ConstantLike
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
value | ::mlir::ElementsAttr | constant vector/tensor attribute |
Résultats:
| Résultat | Description |
|---|---|
output | statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.convert (mhlo::ConvertOp)
Convert operation
Syntaxe:
operation ::= `mhlo.convert` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs an element-wise conversion from one element type to another on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convert
Exemple:
%result = mhlo.convert %operand : (tensor<3xi32>) -> tensor<3xcomplex<f32>>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.convolution (mhlo::ConvolutionOp)
Convolution operation
Syntaxe:
operation ::= `mhlo.convolution` `(`operands`)`
`dim_numbers` `=` custom<ConvolutionDimensions>($dimension_numbers) `,`
`window` `=` `{` custom<WindowAttributes>($window_strides, $padding,
$lhs_dilation, $rhs_dilation,
$window_reversal) `}`
attr-dict `:` functional-type(operands, results)
Computes dot products between windows of lhs and slices of rhs and produces result .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
Exemple:
%result = "mhlo.convolution"(%lhs, %rhs) {
window_strides = dense<4> : tensor<2xi64>,
padding = dense<0> : tensor<2x2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>) -> tensor<1x2x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
lhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
rhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_reversal | ::mlir::DenseElementsAttr | constant boolean vector/tensor attribute |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | Structure of dimension information for conv op |
feature_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
batch_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
| Opérande | Description |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.copy (mhlo::CopyOp)
Copy operation
Syntaxe:
operation ::= `mhlo.copy` operands attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation a copy of operand . Depending on the metadata attached to the operation, it can behave quite differently from a no-op.
Exemple:
%0 = mhlo.copy %arg0 : tensor<f32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
cross_program_prefetch_index | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.cosh (mhlo::CoshOp)
Cosh operation
Syntaxe:
operation ::= `mhlo.cosh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise cosh operation on operand tensor and produces a result tensor.
Exemple:
%result = mhlo.cosh %operand : tensor<2x2xf32>
Traits: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Operands:
| Opérande | Description |
|---|---|
operand | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Résultats:
| Résultat | Description |
|---|---|
result | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.cosine (mhlo::CosineOp)
Cosine operation
Syntaxe:
operation ::= `mhlo.cosine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise cosine operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cosine
Exemple:
%result = mhlo.cosine %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.count_leading_zeros (mhlo::ClzOp)
Clz operation
Syntaxe:
operation ::= `mhlo.count_leading_zeros` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise count of the number of leading zero bits in the operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#count_leading_zeros
Exemple:
%result = mhlo.count_leading_zeros %operand : tensor<2x2xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit integer values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.create_token (mhlo::CreateTokenOp)
CreateToken operation
Syntaxe:
operation ::= `mhlo.create_token` attr-dict `:` type(results)
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as AfterAllOp with 0 inputs: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
Exemple:
%output = mhlo.create_token : !mhlo.token
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Résultats:
| Résultat | Description |
|---|---|
output | jeton |
mhlo.cross-replica-sum (mhlo::CrossReplicaSumOp)
CrossReplicaSum operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as AllReduceOp with channel_id = 0 , use_global_device_ids = false and computation implementing addition: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
Exemple:
%result = "mhlo.cross-replica-sum"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<4xf32>) -> tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.custom_call (mhlo::CustomCallOp)
CustomCall operation
Syntaxe:
operation ::= `mhlo.custom_call` custom<CustomCallTarget>($call_target_name) `(` $inputs `)`
attr-dict `:` functional-type(operands, results)
Encapsulates an implementation-defined operation call_target_name that takes inputs and called_computations and produces results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#custom_call
Exemple:
%results = "mhlo.custom_call"(%input0) {
call_target_name = "foo",
has_side_effect = false,
backend_config = "bar",
api_version = 1 : i32,
called_computations = [@foo]
} : (tensor<f32>) -> tensor<f32>
A custom call invokes code external to XLA. The `inputs` are passed to the
external code, and the external code is expected to produce a result of the
given type. The exact mechanism is backend-specific. For example, in the CPU
backend, a call instruction is emitted which targets a symbol with the name
`call_target_name`.
If XLA runtime is enabled for a backend, then custom calls use the runtime
custom call calling convention to call into the external functions. This
calling convention defines an ABI for encoding arguments, attributes and
results.
Depending on the API version there are two ways to pass extra bits of static
information to the external function:
1. For `API_VERSION_TYPED_FFI` custom calls `backend_config` must be a
dictionary attribute, that will be encoded according to the custom call
calling convention and passed to the external function as the attributes
argument. External code is expected to use declarative bindings (see
`xla/runtime/custom_call.h`) to decode them at run time. These custom
calls are only supported if XLA uses XLA runtime.
2. For previous API versions it is the user responsibility to encode extra
bits of static information as a string `backend_config` attribute, and
decode it at run time.
Interfaces: MemoryEffectOpInterface
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
call_target_name | ::mlir::StringAttr | string attribute |
has_side_effect | ::mlir::BoolAttr | bool attribute |
backend_config | ::mlir::Attribute | string attribute or dictionary of named attribute values |
api_version | ::mlir::mhlo::CustomCallApiVersionAttr | Custom call API version |
called_computations | ::mlir::ArrayAttr | flat symbol ref array attribute |
custom_call_schedule | ::mlir::mhlo::CustomCallScheduleAttr | Specifies the desired schedule for the custom-call. |
operand_layouts | ::mlir::ArrayAttr | Array of layout (1D tensor of index type) attributes |
result_layouts | ::mlir::ArrayAttr | Array of layout (1D tensor of index type) attributes |
output_operand_aliases | ::mlir::ArrayAttr | Aliasing attribute for outputs and operands of CustomCall |
Operands:
| Opérande | Description |
|---|---|
inputs | variadic of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token or nested tuple with any combination of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | variadic of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token or nested tuple with any combination of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token values |
mhlo.divide (mhlo::DivOp)
Div operation
Syntaxe:
operation ::= `mhlo.divide` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise division of dividend lhs and divisor rhs tensors and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#divide
Exemple:
%result = mhlo.divide %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.domain (mhlo::DomainOp)
Domain operation
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, these operations are used to group instructions with the same DomainMetadata property. ShardingMetadata is the main use case today to group instructions on the same device. Domain instructions provide two major benefits:
- Prevent unintentionally optimizing instructions across domains.
- Automatically assign the metadata of the instructions created in the domain. Without domain instructions, each HLO optimization pass would have to check and propagate the metadata, which would be easy to miss and also adds complexity to the compiler. Since domain instructions connect two different domains, each domain instruction is associated with two DomainMetadata -- one on the operand side and one on the user side of the domain.
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
kind | ::mlir::mhlo::DomainKindAttr | Kind of domain metatdata attached to an HLO domain. |
entry_metadata | ::mlir::StringAttr | string attribute |
exit_metadata | ::mlir::StringAttr | string attribute |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
mhlo.dot (mhlo::DotOp)
Dot operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as XLA's Dot: https://www.tensorflow.org/xla/operation_semantics#dot
Exemple:
%0 = mhlo.dot %arg0, %arg1 : (tensor<1x2xi32>, tensor<2x1xi32>) -> tensor<1x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
| Opérande | Description |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dot_general (mhlo::DotGeneralOp)
DotGeneral operation
Computes dot products between slices of lhs and slices of rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dot_general
Exemple:
%result = "mhlo.dot_general"(%lhs, %rhs) {
dot_dimension_numbers = #mhlo.dot<
lhs_batching_dimensions = [0],
rhs_batching_dimensions = [0],
lhs_contracting_dimensions = [2],
rhs_contracting_dimensions = [1]
>,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<2x2x2xi32>, tensor<2x2x2xi32>) -> tensor<2x2x2xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
dot_dimension_numbers | ::mlir::mhlo::DotDimensionNumbersAttr | Attribute that models the dimension information for dot. |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
algorithm | ::mlir::mhlo::DotAlgorithmAttr | Attribute that models the algorithm constraints to use for computing dot. |
Operands:
| Opérande | Description |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_broadcast_in_dim (mhlo::DynamicBroadcastInDimOp)
DynamicBroadcastInDim operation
This operation is functionally identical to broadcast_in_dim op, but the result shape is specified dynamically via output_dimensions .
It also accepts optional attributes to express static knowledge about the expanding behavior of dimensions. If not specified, all dimensions are assumed to be possibly expanding. The sets of dimensions that are known to be expanding and the set of dimensions that are known to be non-expanding must be disjoint and they must be a subset of the operand's dimensions.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_broadcast_in_dim
Exemple:
%operand = mhlo.constant dense<[[1, 2, 3]]> : tensor<1x3xi64>
%output_dimensions = mhlo.constant dense<[2, 3, 2]> : tensor<3xi64>
%result = "mhlo.dynamic_broadcast_in_dim"(%operand, %output_dimensions) {
broadcast_dimensions = array<i64: 2, 1>,
known_expanding_dimensions = array<i64: 0>,
known_nonexpanding_dimensions = array<i64: 1>
} : (tensor<1x3xi64>, tensor<3xi64>) -> tensor<2x3x2xi64>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
broadcast_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
known_expanding_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
known_nonexpanding_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
output_dimensions | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_conv (mhlo::DynamicConvOp)
DynamicConv operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as ConvolutionOp except that padding is specified dynamically via d_padding : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
Exemple:
%result = "mhlo.dynamic_conv"(%lhs, %rhs, %d_padding) {
window_strides = dense<4> : tensor<2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>, tensor<2x2xi64>) -> tensor<1x2x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
lhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
rhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_reversal | ::mlir::DenseElementsAttr | constant boolean vector/tensor attribute |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | Structure of dimension information for conv op |
feature_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
batch_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
| Opérande | Description |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
d_padding | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_gather (mhlo::DynamicGatherOp)
DynamicGather operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as GatherOp except that slice_sizes are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
Exemple:
%result = "mhlo.dynamic_gather"(%operand, %start_indices, %slice_sizes) {
dimension_numbers = #mhlo.gather<
offset_dims = [2, 3],
collapsed_slice_dims = [0],
start_index_map = [0, 2],
index_vector_dim = 2>,
indices_are_sorted = false
} : (tensor<3x4x2xi32>, tensor<2x3x2xi64>, tensor<3xi64>) -> tensor<2x3x2x2xi32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Attribute that models the dimension information for gather |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | ranked tensor of 2/4/8/16/32/64-bit integer values |
slice_sizes | statically shaped 1-dimensional integer tensor of 2/4/8/16/32/64-bit integer values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_iota (mhlo::DynamicIotaOp)
DynamicIota operation
This operation is functionally identical to iota op, but the result shape is specified dynamically via output_shape .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_iota
Exemple:
%0 = mhlo.dynamic_iota %arg0, dim = 0 : (tensor<1xindex>) -> tensor<4xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
iota_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
| Opérande | Description |
|---|---|
output_shape | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_pad (mhlo::DynamicPadOp)
DynamicPad operation
Syntaxe:
operation ::= `mhlo.dynamic_pad` operands attr-dict `:` functional-type(operands, results)
Dynamically Pads the operand , with amount of padding added at low-end/high-end/interior is passed through input tensors.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
padding_value | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
edge_padding_low | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
edge_padding_high | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
interior_padding | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_reshape (mhlo::DynamicReshapeOp)
DynamicReshape operation
Syntaxe:
operation ::= `mhlo.dynamic_reshape` operands attr-dict `:` functional-type(operands, results)
This operation is functionally identical to reshape op, but the result shape is specified dynamically via output_shape .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_reshape
Exemple:
%output_shape = mhlo.constant dense<[3, 2]> : tensor<2xi64>
%result = mhlo.dynamic_reshape %operand, %output_shape : (tensor<2x3xi64>, tensor<2xi64>) -> tensor<3x2xi64>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
operand | tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
output_shape | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Résultats:
| Résultat | Description |
|---|---|
result | tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_slice (mhlo::DynamicSliceOp)
DynamicSlice operation
Extracts a slice from the operand using dynamically-computed starting indices and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_slice
Exemple:
%result = mhlo.dynamic_slice %operand, %start_indices0, %start_indices1, sizes = [2, 2]
: (tensor<4x4xi32>, tensor<i64>, tensor<i64>) -> tensor<2x2xi32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
slice_sizes | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | variadic of 0D tensor of 2/4/8/16/32/64-bit integer values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_update_slice (mhlo::DynamicUpdateSliceOp)
DynamicUpdateSlice operation
Syntaxe:
operation ::= `mhlo.dynamic_update_slice` operands attr-dict `:` functional-type(operands, results)
Produces a result tensor which is equal to the operand tensor except that the slice starting at start_indices is updated with the values in update .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_update_slice
Exemple:
%result = mhlo.dynamic_update_slice %operand, %update, %start_indices0, %start_indices1
: (tensor<4x4xi32>, tensor<2x2xi32>, tensor<i64>, tensor<i64>) -> tensor<4x4xi32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
update | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | variadic of 0D tensor of 2/4/8/16/32/64-bit integer values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.einsum (mhlo::EinsumOp)
Einsum operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as TF's einsum: https://www.tensorflow.org/api_docs/python/tf/einsum
Exemple:
%result = "mhlo.einsum"(%lhs, %rhs) {
einsum_config = "ab,bc->ac"
} : (tensor<4x16xf32>, tensor<16x4xf32>) -> tensor<4x4xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
einsum_config | ::mlir::StringAttr | string attribute |
Operands:
| Opérande | Description |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.erf (mhlo::ErfOp)
Erf operation
Syntaxe:
operation ::= `mhlo.erf` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise erf operation on operand tensor and produces a result tensor.
Exemple:
%result = mhlo.erf %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.exponential (mhlo::ExpOp)
Exp operation
Syntaxe:
operation ::= `mhlo.exponential` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise exponential operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential
Exemple:
%result = mhlo.exponential %operand : tensor<2x2xf64>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.exponential_minus_one (mhlo::Expm1Op)
Expm1 operation
Syntaxe:
operation ::= `mhlo.exponential_minus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise exponential minus one operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential_minus_one
Exemple:
%result = mhlo.exponential_minus_one %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.fft (mhlo::FftOp)
Fft operation
Performs the forward and inverse Fourier transforms for real and complex inputs/outputs.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#fft
Exemple:
%result = mhlo.fft %operand, type = FFT, length = [4] : (tensor<4xcomplex<f32>>) -> tensor<4xcomplex<f32>>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
fft_type | ::mlir::mhlo::FftTypeAttr | XLA fast fourier transform type. |
fft_length | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.floor (mhlo::FloorOp)
Floor operation
Syntaxe:
operation ::= `mhlo.floor` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise floor of operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#floor
Exemple:
%result = mhlo.floor %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or per-tensor integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or per-tensor integer quantized values |
mhlo.fusion (mhlo::FusionOp)
Fusion operation
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation consists of a group of basic ops (represented as a region attached to it). It serves as a hint to the backend that it is beneficial to emit the contained ops into a single loop nest or kernel.
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
fusion_kind | ::mlir::mhlo::FusionKindAttr | fusion kind |
output_operand_aliases | ::mlir::ArrayAttr | Aliasing attribute for outputs and operands of Fusion |
Operands:
| Opérande | Description |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
Résultats:
| Résultat | Description |
|---|---|
results | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.gather (mhlo::GatherOp)
Gather operation
Gathers slices from operand tensor from offsets specified in start_indices and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
Exemple:
%result = "mhlo.gather"(%operand, %start_indices) {
dimension_numbers = #stablehlo.gather<
offset_dims = [3, 4],
collapsed_slice_dims = [1],
operand_batching_dims = [0],
start_indices_batching_dims = [1],
start_index_map = [2, 1],
index_vector_dim = 3>,
slice_sizes = dense<[0, 2, 2]> : tensor<3xi64>,
indices_are_sorted = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>) -> tensor<2x2x3x2x2xi64>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Attribute that models the dimension information for gather |
slice_sizes | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | ranked tensor of 2/4/8/16/32/64-bit integer values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.get_dimension_size (mhlo::GetDimensionSizeOp)
GetDimensionSize operation
Produces the size of the given dimension of the operand .
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_dimension_size
Exemple:
%result = mhlo.get_dimension_size %operand, dim = 1 : (tensor<2x3xf32>) -> tensor<i32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | tensor of 32-bit signless integer values |
mhlo.get_tuple_element (mhlo::GetTupleElementOp)
GetTupleElement operation
Syntaxe:
operation ::= `mhlo.get_tuple_element` $operand `[` $index `]` attr-dict `:` functional-type(operands, results)
Extracts element at index position of the operand tuple and produces a result .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_tuple_element
Exemple:
%result = mhlo.get_tuple_element %operand[0] : (tuple<tensor<2xf32>, tuple<tensor<i32>>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
index | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
Operands:
| Opérande | Description |
|---|---|
operand | nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.if (mhlo::IfOp)
If operation
Produces the output from executing exactly one branch from true_branch or false_branch depending on the value of pred .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#if
Example: %result = "mhlo.if"(%pred) ({ "mhlo.return"(%result_true_branch) : (tensor
Traits: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferTypeOpInterface
Operands:
| Opérande | Description |
|---|---|
pred | ranked tensor of bool values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
mhlo.imag (mhlo::ImagOp)
Imag operation
Syntaxe:
operation ::= `mhlo.imag` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the imaginary part, element-wise, from the operand and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#imag
Exemple:
%result = mhlo.imag %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.infeed (mhlo::InfeedOp)
Infeed operation
Reads data from the infeed and produces results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#infeed
Exemple:
%results:2 = "mhlo.infeed"(%token) {
infeed_config = ""
} : (!mhlo.token) -> (tensor<3x3x3xi32>, !mhlo.token)
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
infeed_config | ::mlir::StringAttr | string attribute |
layout | ::mlir::ArrayAttr | array attribute |
Operands:
| Opérande | Description |
|---|---|
token | jeton |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | variadic of statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token |
mhlo.iota (mhlo::IotaOp)
Iota operation
Fills an output tensor with values in increasing order starting from zero along the iota_dimension dimension.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#iota
Exemple:
%output = mhlo.iota dim = 0 : tensor<4x5xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
iota_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Résultats:
| Résultat | Description |
|---|---|
output | statically shaped tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.is_finite (mhlo::IsFiniteOp)
IsFinite operation
Syntaxe:
operation ::= `mhlo.is_finite` $x attr-dict `:` functional-type(operands, results)
Performs element-wise check whether the value in x is finite (ie is neither +Inf, -Inf, nor NaN) and produces a y tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#is_finite
Exemple:
%y = mhlo.is_finite %x : (tensor<7xf32>) -> tensor<7xi1>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
x | ranked tensor of 4/6/8/16/32/64-bit float values |
Résultats:
| Résultat | Description |
|---|---|
y | ranked tensor of bool values |
mhlo.log (mhlo::LogOp)
Log operation
Syntaxe:
operation ::= `mhlo.log` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log
Exemple:
%result = mhlo.log %operand : tensor<2x2xf64>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.log_plus_one (mhlo::Log1pOp)
Log1p operation
Syntaxe:
operation ::= `mhlo.log_plus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm plus one operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log_plus_one
Exemple:
%result = mhlo.log_plus_one %operand : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.logistic (mhlo::LogisticOp)
Logistic operation
Syntaxe:
operation ::= `mhlo.logistic` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logistic operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#logistic
Exemple:
%result = mhlo.logistic %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.map (mhlo::MapOp)
Map operation
Applies a map function computation to inputs along the dimensions and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#map
Exemple:
%result = "mhlo.map"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.multiply %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
dimensions = dense<[0, 1]> : tensor<2xi64>
} : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32>
Traits: InferTensorType , RecursiveMemoryEffects , SameOperandsAndResultShape , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Opérande | Description |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.maximum (mhlo::MaxOp)
Max operation
Syntaxe:
operation ::= `mhlo.maximum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise max operation on tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#maximum
Exemple:
%result = mhlo.maximum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.minimum (mhlo::MinOp)
Min operation
Syntaxe:
operation ::= `mhlo.minimum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise min operation on tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#minimum
Exemple:
%result = mhlo.minimum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.minimum_broadcast_shapes (mhlo::MinimumBroadcastShapesOp)
Minimizes the rank of two or more shapes to be broadcasted
Syntaxe:
operation ::= `mhlo.minimum_broadcast_shapes` $shapes attr-dict `:` type($shapes) `->` type($results)
Given two or more 1D tensors representing shapes, returns one 1D tensor for each operand, where operand i corresponds to output i .
The returned tensors have the property that they specify a shape which is a reshape of the corresponding input shape, and the broadcasted output shape (using shape::BroadcastOp) of the returned shapes is a reshape of the broadcasted output shape of the input shapes. Among all possibilities with this property, the one is chosen which minimizes the rank of each returned shape.
The general idea of this op is that it can be used for ops which have a broadcasting semantic to operate on shapes with a possibly smaller rank while preserving equivalence of the computed values. After computing the result of the op using reshaped operands, the result can be reshaped to the result that would have been originally computed.
Here is an example with two input shapes:
mhlo.minimum_broadcast_shapes [1, 2, 3, 1, 2, 1],
[1, 1, 1, 2, 3] -> [6, 2, 1], [2, 3]
The broadcasted output shape of the operands is [1, 2, 3, 1, 2, 3], the broadcasted output shape of the outputs is [6, 2, 3]. These two shapes are reshapes of each other, and also each output is a reshape of the corresponding input.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
shapes | variadic of 1D tensor of index values |
Résultats:
| Résultat | Description |
|---|---|
results | variadic of 1D tensor of index values |
mhlo.multiply (mhlo::MulOp)
Mul operation
Syntaxe:
operation ::= `mhlo.multiply` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise product of two tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#multiply
Exemple:
%result = mhlo.multiply %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.negate (mhlo::NegOp)
Neg operation
Syntaxe:
operation ::= `mhlo.negate` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise negation of operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#negate
Exemple:
%result = mhlo.negate %operand : tensor<2x3xi32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.not (mhlo::NotOp)
Not operation
Syntaxe:
operation ::= `mhlo.not` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise NOT of tensor operand of type integer and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#not
Exemple:
%result = mhlo.not %operand : tensor<5x3x1xi1>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
mhlo.optimization_barrier (mhlo::OptimizationBarrierOp)
OptimizationBarrier operation
Syntaxe:
operation ::= `mhlo.optimization_barrier` attr-dict ($operand^ `:` custom<PairwiseOpType>(type($operand), type($result))):(`(` `)`)?
Ensures that the operations that produce the operand are executed before any operations that depend on the result and prevents compiler transformations from moving operations across the barrier. Other than that, the operation is an identity, ie result = operand .
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#optimization_barrier
Exemple:
%result0, %result1 = mhlo.optimization_barrier %operand0, %operand1 : tensor<f32>, tensor<f32>
Traits: AlwaysSpeculatableImplTrait , HLO_PairwiseSameOperandAndResultType
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
operand | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
Résultats:
| Résultat | Description |
|---|---|
result | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
mhlo.or (mhlo::OrOp)
Or operation
Syntaxe:
operation ::= `mhlo.or` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise OR of two tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#or
Exemple:
%result = mhlo.or %lhs, %rhs : tensor<2xi1>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
lhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.outfeed (mhlo::OutfeedOp)
Outfeed operation
Writes inputs to the outfeed and produces a result token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#outfeed
Exemple:
%result = "mhlo.outfeed"(%input0, %token) {
outfeed_config = ""
} : (tensor<3x3x3xi32>, !mhlo.token) -> !mhlo.token
Interfaces: InferTypeOpInterface
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
outfeed_config | ::mlir::StringAttr | string attribute |
Operands:
| Opérande | Description |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
token | jeton |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | jeton |
mhlo.pad (mhlo::PadOp)
Pad operation
Expands operand by padding around the tensor as well as between the elements of the tensor with the given padding_value .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#pad
Exemple:
%0 = mhlo.pad %arg0, %arg1, low = [0, 1], high = [2, 1], interior = [1, 2]
: (tensor<2x3xi32>, tensor<i32>) -> tensor<5x9xi32>
Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
edge_padding_low | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
edge_padding_high | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
interior_padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
padding_value | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.partition_id (mhlo::PartitionIdOp)
PartitionId operation
Syntaxe:
operation ::= `mhlo.partition_id` attr-dict `:` type(results)
Produces partition_id of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#partition_id
Exemple:
%result = mhlo.partition_id : tensor<ui32>
Interfaces: InferTypeOpInterface
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 32-bit unsigned integer values |
mhlo.popcnt (mhlo::PopulationCountOp)
PopulationCount operation
Syntaxe:
operation ::= `mhlo.popcnt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise count of the number of bits set in the operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#popcnt
Exemple:
%result = mhlo.popcnt %operand : tensor<4xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit integer values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.power (mhlo::PowOp)
Pow operation
Syntaxe:
operation ::= `mhlo.power` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise exponentiation of lhs tensor by rhs tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#power
Exemple:
%result = mhlo.power %lhs, %rhs : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.ragged_dot (mhlo::RaggedDotOp)
Ragged matrix multiplication over a single ragged dimension
This operation takes three tensor args---lhs, rhs, and group_sizes---and a "ragged_dot_dimension_numbers" attribute. Like dot_general, the lhs and rhs are allowed arbitrary batch and contracting dimensions. Additionally, the lhs is required to have one ragged dimension, and the rhs may have at most one group dimension. The op has three modes, depending on the kind of the lhs ragged dimension.
In mode 1, the shape-signature is [b,m,k], [g,b,k,n], [b,g] -> [b,m,n] . Here the ragged dimension is an lhs non-contracting dimension ( m ). The dimensions b and k represent batch and contracting dimensions respectively. The rhs is required to have a group dimension ( g ).
In mode 2, the shape-signature is [b,m,k], [b,k,n], [b,g] -> [g,b,m,n] . Here the ragged dimension is an lhs/rhs contracting dimension ( k ).
In mode 3, the shape-signature is [b,m,k], [b,k,n], [g] -> [b,m,n] . Here the ragged dimension is an lhs/rhs batch dimension ( b ).
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
ragged_dot_dimension_numbers | ::mlir::mhlo::RaggedDotDimensionNumbersAttr | Attribute that models the dimension information for ragged dot. |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
| Opérande | Description |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
group_sizes | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.real (mhlo::RealOp)
Opération réelle
Syntaxe:
operation ::= `mhlo.real` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the real part, element-wise, from the operand and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#real
Exemple:
%result = mhlo.real %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.real_dynamic_slice (mhlo::RealDynamicSliceOp)
RealDynamicSlice operation
Syntaxe:
operation ::= `mhlo.real_dynamic_slice` operands attr-dict `:` functional-type(operands, results)
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as SliceOp except that start_indices , limit_indices and strides are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
Exemple:
%result = mhlo.real_dynamic_slice %operand,
%start_indices, %limit_indices, %strides
: (tensor<256x?xf32>, tensor<2xindex>, tensor<2xindex>, tensor<2xindex>) -> tensor<256x?xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
limit_indices | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
strides | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.recv (mhlo::RecvOp)
Recv operation
Receives data from a channel with channel_id and produces results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#recv
Exemple:
%results:2 = "mhlo.recv"(%token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type DEVICE_TO_DEVICE>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 1>,
is_host_transfer = false,
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>
} : (!mhlo.token) -> (tensor<3x4xi32>, !mhlo.token)
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool attribute |
source_target_pairs | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Opérande | Description |
|---|---|
token | jeton |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | variadic of statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token |
mhlo.reduce (mhlo::ReduceOp)
Reduce operation
Applies a reduction function body to inputs and init_values along the dimensions and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce
Exemple:
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
Traits: InferTensorType , RecursiveMemoryEffects , SameVariadicOperandSize , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Opérande | Description |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
init_values | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.reduce_precision (mhlo::ReducePrecisionOp)
ReducePrecision operation
Syntaxe:
operation ::= `mhlo.reduce_precision` $operand `,` `format` `=` custom<ExponentMantissa>($exponent_bits, $mantissa_bits)
attr-dict `:` custom<SameOperandsAndResultType>(type($operand), type($output))
Performs element-wise conversion of operand to another floating-point type that uses exponent_bits and mantissa_bits and back to the original floating-point type and produces an output tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_precision
Exemple:
%output = mhlo.reduce_precision %operand, format = e5m2 : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
exponent_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is positive |
mantissa_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Résultats:
| Résultat | Description |
|---|---|
output | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.reduce_scatter (mhlo::ReduceScatterOp)
ReduceScatter operation
Within each process group in the process grid, performs reduction, using computations , over the values of the operand tensor from each process, splits the reduction result along scatter_dimension into parts, and scatters the split parts between the processes to produce the result .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_scatter
Exemple:
%result = "mhlo.reduce_scatter"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg0, %arg1 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
scatter_dimension = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<2x4xf32>) -> tensor<2x2xf32>
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
scatter_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
replica_groups | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
use_global_device_ids | ::mlir::UnitAttr | unit attribute |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.reduce_window (mhlo::ReduceWindowOp)
ReduceWindow operation
Applies a reduction function body to windows of inputs and init_values and produces results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_window
Exemple:
%result = "mhlo.reduce_window"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
window_dimensions = dense<[2, 1]> : tensor<2xi64>,
window_strides = dense<[4, 1]> : tensor<2xi64>,
base_dilations = dense<[2, 1]> : tensor<2xi64>,
window_dilations = dense<[3, 1]> : tensor<2xi64>,
padding = dense<[[2, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<3x2xi32>, tensor<i32>) -> tensor<2x2xi32>
Traits: InferTensorType , RecursiveMemoryEffects , SameVariadicOperandSize , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
base_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Opérande | Description |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
init_values | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.remainder (mhlo::RemOp)
Rem operation
Syntaxe:
operation ::= `mhlo.remainder` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise remainder of dividend lhs and divisor rhs tensors and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#remainder
Exemple:
%result = mhlo.remainder %lhs, %rhs : tensor<4xi64>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.replica_id (mhlo::ReplicaIdOp)
ReplicaId operation
Syntaxe:
operation ::= `mhlo.replica_id` attr-dict `:` type(results)
Produces replica_id of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#replica_id
Exemple:
%result = mhlo.replica_id : tensor<ui32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 32-bit unsigned integer values |
mhlo.reshape (mhlo::ReshapeOp)
Reshape operation
Syntaxe:
operation ::= `mhlo.reshape` operands attr-dict `:` functional-type(operands, results)
Performs reshape of operand tensor to a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reshape
Exemple:
%result = mhlo.reshape %operand : (tensor<2xf32>) -> tensor<1x2xf32>
Traits: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
operand | tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | statically shaped or single bounded dimension tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.return (mhlo::ReturnOp)
_This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/425
Informally, this operation serves as a terminator for regions defined by
the StableHLO ops. Non-StableHLO ops, e.g. `func.func`, have their own
terminators, e.g. `func.return`.
Example:
```mlir
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
```_
Syntax:
```
operation ::= mhlo.return $results attr-dict ( : type($results)^)?
Traits: `AlwaysSpeculatableImplTrait`, `Terminator`
Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`
Effects: `MemoryEffects::Effect{}`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `results` | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
### `mhlo.reverse` (mhlo::ReverseOp)
_Reverse operation_
Reverses the order of elements in the `operand` along the specified
`dimensions` and produces a `result` tensor.
See:
<a href="https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse">https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse</a>
Example:
```mlir
%result = mhlo.reverse %operand, dims = [1] : tensor<3x2xi32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.rng (mhlo::RngOp)
Rng operation
Generates random numbers using the rng_distribution algorithm and produces a result tensor of a given shape shape .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng
Exemple:
%result = mhlo.rng %a, %b, %shape, distribution = NORMAL : (tensor<i32>, tensor<i32>, tensor<2xi64>) -> tensor<3x3xi32>
Traits: InferTensorType
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
rng_distribution | ::mlir::mhlo::RngDistributionAttr | XLA PRNG distribution to be used. |
Operands:
| Opérande | Description |
|---|---|
a | 0D tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
b | 0D tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
shape | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
mhlo.rng_bit_generator (mhlo::RngBitGeneratorOp)
RngBitGenerator operation
Returns an output filled with uniform random data and an updated output state output_state given an initial state initial_state using the pseudorandom number generator algorithm rng_algorithm .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng_bit_generator
Exemple:
%output_state, %output = mhlo.rng_bit_generator %initial_state, algorithm = THREE_FRY : (tensor<2xui64>) -> (tensor<2xui64>, tensor<2x2xui64>)
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
rng_algorithm | ::mlir::mhlo::RngAlgorithmAttr | XLA PRNG algorithm to be used. |
Operands:
| Opérande | Description |
|---|---|
initial_state | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
Résultats:
| Résultat | Description |
|---|---|
output_state | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
output | statically shaped tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
mhlo.round_nearest_afz (mhlo::RoundOp)
Round operation
Syntaxe:
operation ::= `mhlo.round_nearest_afz` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties away from zero, on the operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_afz
Exemple:
%result = mhlo.round_nearest_afz %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.round_nearest_even (mhlo::RoundNearestEvenOp)
RoundNearestEven operation
Syntaxe:
operation ::= `mhlo.round_nearest_even` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties towards the even integer, on the operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_even
Exemple:
%result = mhlo.round_nearest_even %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.rsqrt (mhlo::RsqrtOp)
Rsqrt operation
Syntaxe:
operation ::= `mhlo.rsqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise reciprocal square root operation on operand tensor and produces a result tensor, implementing the rSqrt operation from the IEEE-754 specification.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rsqrt
Exemple:
%result = mhlo.rsqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.scatter (mhlo::ScatterOp)
Scatter operation
Produces results tensors which are equal to inputs tensors except that several slices specified by scatter_indices are updated with the values updates using update_computation .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#scatter
Exemple:
%result = "mhlo.scatter"(%input, %scatter_indices, %update) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
scatter_dimension_numbers = #mhlo.scatter<
update_window_dims = [3, 4],
inserted_window_dims = [1],
input_batching_dims = [0],
scatter_indices_batching_dims = [1],
scatter_dims_to_operand_dims = [2, 1],
index_vector_dim = 3>,
indices_are_sorted = false,
unique_indices = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>, tensor<2x2x3x2x2xi64>) -> tensor<2x3x4x2xi64>
Traits: RecursiveMemoryEffects , SameVariadicOperandSize
Interfaces: InferTypeOpInterface
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
scatter_dimension_numbers | ::mlir::mhlo::ScatterDimensionNumbersAttr | Attribute that models the dimension information for scatter |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
unique_indices | ::mlir::BoolAttr | bool attribute |
Operands:
| Opérande | Description |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
scatter_indices | ranked tensor of integer or index values |
updates | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.select (mhlo::SelectOp)
Sélectionner l'opération
Syntaxe:
operation ::= `mhlo.select` operands attr-dict `:`
custom<SelectOpType>(type($pred), type($on_true), type($on_false), type($result))
Produces a result tensor where each element is selected from on_true or on_false tensor based on the value of the corresponding element of pred .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select
Exemple:
%result = mhlo.select %pred, %on_true, %on_false : tensor<2x2xi1>, tensor<2x2xi32>
Traits: AlwaysSpeculatableImplTrait , HLO_BroadcastingElementwise , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
pred | ranked tensor of bool values |
on_true | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
on_false | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.select_and_scatter (mhlo::SelectAndScatterOp)
SelectAndScatter operation
Scatters the values from the source tensor using scatter based on the outcome of reduce_window of the input tensor using select and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select_and_scatter
Exemple:
%result = "mhlo.select_and_scatter"(%operand, %source, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GE>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
window_dimensions = dense<[3, 1]> : tensor<2xi64>,
window_strides = dense<[2, 1]> : tensor<2xi64>,
padding = dense<[[0, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<4x2xi32>, tensor<2x2xi32>, tensor<i32>) -> tensor<4x2xi32>
Traits: RecursiveMemoryEffects
Interfaces: InferTypeOpInterface
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
source | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
init_value | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.send (mhlo::SendOp)
Send operation
Sends inputs to a channel channel_id and produces a result token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#send
Exemple:
%result = "mhlo.send"(%operand, %token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type DEVICE_TO_DEVICE>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 1>,
is_host_transfer = false,
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>
} : (tensor<3x4xi32>, !mhlo.token) -> !mhlo.token
Interfaces: InferTypeOpInterface
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool attribute |
source_target_pairs | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Opérande | Description |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
token | jeton |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | jeton |
mhlo.set_dimension_size (mhlo::SetDimensionSizeOp)
SetDimensionSize operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as XLA's SetDimensionSize: https://www.tensorflow.org/xla/operation_semantics#setdimensionsize
Exemple:
%0 = mhlo.set_dimension_size %arg0, %arg1, dim = 1 : (tensor<4x2xf32>, tensor<i32>) -> tensor<4x2xf32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
size | tensor of 32-bit signless integer values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.shift_left (mhlo::ShiftLeftOp)
ShiftLeft operation
Syntaxe:
operation ::= `mhlo.shift_left` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise left-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_left
Exemple:
%result = mhlo.shift_left %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.shift_right_arithmetic (mhlo::ShiftRightArithmeticOp)
ShiftRightArithmetic operation
Syntaxe:
operation ::= `mhlo.shift_right_arithmetic` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise arithmetic right-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_arithmetic
Exemple:
%result = mhlo.shift_right_arithmetic %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.shift_right_logical (mhlo::ShiftRightLogicalOp)
ShiftRightLogical operation
Syntaxe:
operation ::= `mhlo.shift_right_logical` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise logical right-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_logical
Exemple:
%result = mhlo.shift_right_logical %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.sign (mhlo::SignOp)
Sign operation
Syntaxe:
operation ::= `mhlo.sign` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Returns the sign of the operand element-wise and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sign
Exemple:
%result = mhlo.sign %operand : tensor<7xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.sine (mhlo::SineOp)
Sine operation
Syntaxe:
operation ::= `mhlo.sine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise sine operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sine
Exemple:
%result = mhlo.sine %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.sinh (mhlo::SinhOp)
Sinh operation
Syntaxe:
operation ::= `mhlo.sinh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise sinh operation on operand tensor and produces a result tensor.
Exemple:
%result = mhlo.sinh %operand : tensor<2x2xf32>
Traits: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Operands:
| Opérande | Description |
|---|---|
operand | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Résultats:
| Résultat | Description |
|---|---|
result | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.slice (mhlo::SliceOp)
Slice operation
Extracts a slice from the operand using statically-computed starting indices and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
Exemple:
%result = "mhlo.slice" (%operand) {
start_indices = dense<[1, 2]> : tensor<2xi64>,
limit_indices = dense<[3, 4]> : tensor<2xi64>,
strides = dense<1> : tensor<2xi64>
} : (tensor<3x4xi64>) -> tensor<2x2xi64>
Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
start_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
limit_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.sort (mhlo::SortOp)
Sort operation
Sorts a variadic number of tensors in inputs together, according to a custom comparator , along the given dimension and produces a variadic number of tensors as results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sort
Exemple:
%result0, %result1 = "mhlo.sort"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>, %arg2: tensor<i32>, %arg3: tensor<i32>):
%predicate = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%predicate) : (tensor<i1>) -> ()
}) {
dimension = 0 : i64,
is_stable = true
} : (tensor<2x3xi32>, tensor<2x3xi32>) -> (tensor<2x3xi32>, tensor<2x3xi32>)
Traits: InferTensorType , RecursiveMemoryEffects , SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute |
is_stable | ::mlir::BoolAttr | bool attribute |
Operands:
| Opérande | Description |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.sqrt (mhlo::SqrtOp)
Sqrt operation
Syntaxe:
operation ::= `mhlo.sqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise square root operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sqrt
Exemple:
%result = mhlo.sqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.stochastic_convert (mhlo::StochasticConvertOp)
StochasticConvert operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/295
Informally, this operation performs element-wise conversion of values from a bigger type to a smaller one with stochastic rounding using the random number passed in.
Traits: AlwaysSpeculatableImplTrait , Elementwise
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
random | ranked tensor of 2/4/8/16/32/64-bit unsigned integer values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.subtract (mhlo::SubtractOp)
Subtract operation
Syntaxe:
operation ::= `mhlo.subtract` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise subtraction of two tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#subtract
Exemple:
%result = mhlo.subtract %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.tan (mhlo::TanOp)
Tan operation
Syntaxe:
operation ::= `mhlo.tan` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/954
Informally, this operation returns Tan(operand) element-wise.
Exemple:
%0 = mhlo.tan %arg0 : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.tanh (mhlo::TanhOp)
Tanh operation
Syntaxe:
operation ::= `mhlo.tanh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise hyperbolic tangent operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tanh
Exemple:
%result = mhlo.tanh %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.topk (mhlo::TopKOp)
TopK operation
Syntaxe:
operation ::= `mhlo.topk` `(`$operand `,` `k` `=` $k (`,` `largest` `=` $largest^)? `)` attr-dict `:`
type($operand) `->` `(`type($values)`,` type($indices)`)`
Returns top k values and their indices, along the last dimension of the operand if largest=true or the bottom k values if largest=false .
See: https://www.tensorflow.org/xla/operation_semantics#top-k
Exemple:
%values, %indices = mhlo.topk(%operand, k=5, largest=true)
: tensor<100xf32> -> (tensor<5xf32>, tensor<5xi32>)
Traits: InferTensorType , RecursiveMemoryEffects
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
k | ::mlir::IntegerAttr | 64-bit signless integer attribute |
largest | ::mlir::BoolAttr | bool attribute |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
values | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
indices | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.torch_index_select (mhlo::TorchIndexSelectOp)
TorchIndexSelect operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as PyTorch's index_select, augmented with support for batch dimensions: https://pytorch.org/docs/stable/generated/torch.index_select.html
The batch_dims attribute specifies the number of major batch dimensions (0 or more) that act like a multidimensional loop over both the operand and the index.
Exemple:
%result = "mhlo.torch_index_select"(%operand, %index) {
dim = 2 : i64,
batch_dims = 1 : i64
} : (tensor<8x128x3072x64xf32>, tensor<8x16x1024xi32>) -> tensor<8x128x16x1024x64xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
dim | ::mlir::IntegerAttr | 64-bit signless integer attribute |
batch_dims | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
index | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.trace (mhlo::TraceOp)
Trace operation
Syntaxe:
operation ::= `mhlo.trace` $operand `,` $tag attr-dict `:` type($operand)
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/604
It is not used by JAX, PyTorch or TensorFlow, so it looks like we should've classified it as "Private to XLA" and not included it in StableHLO in the first place. With that in mind, its semantics will not be documented here.
Exemple:
mhlo.trace %arg0, "In test code." : tensor<5x1x5xi32>
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
tag | ::mlir::StringAttr | string attribute |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.transpose (mhlo::TransposeOp)
Transpose operation
Permutes the dimensions of operand tensor using permutation and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#transpose
Exemple:
%0 = mhlo.transpose %arg0, dims = [2, 1, 0] : (tensor<1x2x3xi32>) -> tensor<3x2x1xi32>
Traits: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
permutation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.triangular_solve (mhlo::TriangularSolveOp)
TriangularSolve operation
Solves batches of systems of linear equations with lower or upper triangular coefficient matrices.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#triangular_solve
Exemple:
%result = "mhlo.triangular_solve"(%a, %b) {
left_side = true,
lower = true,
unit_diagonal = false,
transpose_a = #stablehlo<transpose NO_TRANSPOSE>
} : (tensor<3x3xf32>, tensor<3x3xf32>) -> tensor<3x3xf32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
left_side | ::mlir::BoolAttr | bool attribute |
lower | ::mlir::BoolAttr | bool attribute |
unit_diagonal | ::mlir::BoolAttr | bool attribute |
transpose_a | ::mlir::mhlo::TransposeAttr | Transpose options |
Operands:
| Opérande | Description |
|---|---|
a | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
b | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.tuple (mhlo::TupleOp)
Tuple operation
Syntaxe:
operation ::= `mhlo.tuple` $val attr-dict `:` custom<TupleOpType>(type($val), type($result))
Produces a result tuple from values val .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tuple
Exemple:
%result = mhlo.tuple %val0, %val1 : tuple<tensor<2xf32>, tuple<tensor<i32>>>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
val | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.uniform_dequantize (mhlo::UniformDequantizeOp)
UniformDequantize operation
Syntaxe:
operation ::= `mhlo.uniform_dequantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of quantized tensor operand to a floating-point tensor result according to the quantization parameters defined by the operand type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_dequantize
Exemple:
%result = mhlo.uniform_dequantize %operand : (tensor<16x16x!quant.uniform<i8:f32, 34.0:16>>) -> tensor<16x16xf32>
Traits: AlwaysSpeculatableImplTrait , Elementwise , InferTensorType , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of per-tensor integer quantized or per-axis integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.uniform_quantize (mhlo::UniformQuantizeOp)
UniformQuantize operation
Syntaxe:
operation ::= `mhlo.uniform_quantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of floating-point tensor or quantized tensor operand to a quantized tensor result according to the quantization parameters defined by the result type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_quantize
Exemple:
%result = mhlo.uniform_quantize %operand : (tensor<16x16xf32>) -> tensor<16x16x!quant.uniform<ui8:f32, 34.0:16>>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of per-tensor integer quantized or per-axis integer quantized values |
mhlo.while (mhlo::WhileOp)
While operation
Produces the output from executing body function 0 or more times while the cond function outputs true .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#while
Exemple:
%results0, %results1 = "mhlo.while"(%operand0, %operand1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction LT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %constant0) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0, %arg1) : (tensor<i32>, tensor<i32>) -> ()
}) : (tensor<i32>, tensor<i32>) -> (tensor<i32>, tensor<i32>)
Traits: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferTypeOpInterface , OpAsmOpInterface
Operands:
| Opérande | Description |
|---|---|
operand | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.xla.rng_get_and_update_state (mhlo::XlaRngGetAndUpdateStateOp)
XlaRngGetAndUpdateState operation
Syntaxe:
operation ::= `mhlo.xla.rng_get_and_update_state` attr-dict
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation represents the change of the global random number generator state for rng instructions. The global state is incremented by delta and the old state is returned.
The output is currently defined for a single output type. If this changes in the future to support multiple types, lowering to use of a global memref must ensure that a single memref is still used and updated appropriately.
Interfaces: InferTypeOpInterface
Attributs:
| Attribut | MLIR Type | Description |
|---|---|---|
delta | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Résultats:
| Résultat | Description |
|---|---|
| "anonyme" | statically shaped tensor of 64-bit unsigned integer values |
mhlo.xor (mhlo::XorOp)
Xor operation
Syntaxe:
operation ::= `mhlo.xor` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise XOR of two tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#xor
Exemple:
%result = mhlo.xor %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Opérande | Description |
|---|---|
lhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
Résultats:
| Résultat | Description |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Attributes
ArgResultAliasAttr
Attribute that models the alias relationship of entry function argument
This attribute captures the alias relationship of an MHLO main function argument to one of the results, denoted by resultIndex . The argTupleIndices and resultTupleIndices are used to index into nested tuples in operand and result respectively. If isMustAlias is true then the operand-result pair must alias.
This is meant to be used as an attribute on a function argument in MHLO. For example, in the following code it expresses that %arg1 may alias 0-th result.
func @main(%arg0: tensor<2xf32>, %arg1: tensor<3xf32> {mhlo.result_alias =
mhlo.result_alias<result_index = [2], ...>}
) -> tensor<2xf32>, tensor<3xf32> {
// function body ...
}
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| argTupleIndices | ::llvm::ArrayRef<int64_t> | Dimension |
| resultIndex | int64_t | |
| resultTupleIndices | ::llvm::ArrayRef<int64_t> | Dimension |
| isMustAlias | bool |
ChannelHandleAttr
Two 64-bit integers 'handle' and 'type'
Syntaxe:
#mhlo.channel_handle<
int64_t, # handle
int64_t # type
>
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| poignée | int64_t | |
| taper | int64_t |
ComparisonDirectionAttr
Which comparison operation to perform.
Syntaxe:
#mhlo.comparison_direction<
::mlir::mhlo::ComparisonDirection # value
>
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| valeur | ::mlir::mhlo::ComparisonDirection | an enum of type ComparisonDirection |
ComparisonTypeAttr
Which comparison type to use.
Syntaxe:
#mhlo.comparison_type<
::mlir::mhlo::ComparisonType # value
>
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| valeur | ::mlir::mhlo::ComparisonType | an enum of type ComparisonType |
ConvDimensionNumbersAttr
Structure of dimension information for conv op
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| inputBatchDimension | int64_t | |
| inputFeatureDimension | int64_t | |
| inputSpatialDimensions | ::llvm::ArrayRef<int64_t> | Dimension |
| kernelInputFeatureDimension | int64_t | |
| kernelOutputFeatureDimension | int64_t | |
| kernelSpatialDimensions | ::llvm::ArrayRef<int64_t> | Dimension |
| outputBatchDimension | int64_t | |
| outputFeatureDimension | int64_t | |
| outputSpatialDimensions | ::llvm::ArrayRef<int64_t> | Dimension |
CrossProgramPrefetchAttr
Argument that is prefetched from another program
Syntaxe:
#mhlo.cross_program_prefetch<
int64_t, # parameter
::llvm::ArrayRef<int64_t>, # indices
std::optional<int64_t> # offset
>
This attribute captures an argument that is prefetched from another program. For a given CrossProgramPrefetchAttr , parameter tells us which argument of the main function of the module is prefetched, and indices is a shape index telling us what subshape of that argument is prefetched.
A shape has a subshape iff it is a tuple. In that case, the subshape of the tuple by indices is the shape achieved after indexing by each element of indices in turn. For example, the [1,0] subshape of tuple<tuple<token, token>, tuple<tensor<i32>, token>> is tensor<i32> .
An empty value for indices means the whole shape is prefetched.
Par exemple,
module attributes { mhlo.cross_program_prefetch = [ #mhlo.cross_program_prefetch< parameter = 0, indices = [0]> ]} {
func.func @copy(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%0 = "mhlo.copy"(%arg0) {is_cross_program_prefetch}
return %0 : tuple<tensor<2x3xi32>, tensor<i32>>
}
func.func @main(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%1 = "mhlo.async_start"(%arg0) {called_computation=@copy}
%2 = "mhlo.async_done"(%1) {called_computation=@copy}
return %2 : tuple<tensor<2x3xi32>, tensor<i32>>
}
}
The parameter = 0 tells us that the async copy of the 0 th parameter is a cross_program_prefetch , while the index of [0] tells us that the 0 th element of the tuple is prefetched while the other element of the tuple is not.
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| paramètre | int64_t | |
| indices | ::llvm::ArrayRef<int64_t> | Dimension |
| compenser | std::optional<int64_t> |
CustomCallScheduleAttr
Specifies the desired schedule for the custom-call.
Syntaxe:
#mhlo.custom_call_schedule<
::mlir::mhlo::CustomCallSchedule # value
>
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| valeur | ::mlir::mhlo::CustomCallSchedule | an enum of type CustomCallSchedule |
DequantizeModeAttr
_Dequantization mode. Only MIN COMBINED is supported.
Syntaxe:
#mhlo.dequantize_mode<
::mlir::mhlo::DequantizeMode # value
>
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| valeur | ::mlir::mhlo::DequantizeMode | an enum of type DequantizeMode |
DomainKindAttr
Kind of domain metatdata attached to an HLO domain.
Syntaxe:
#mhlo.kind<
::mlir::mhlo::DomainKind # value
>
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| valeur | ::mlir::mhlo::DomainKind | an enum of type DomainKind |
DotAlgorithmAttr
Attribute that models the algorithm constraints to use for computing dot.
Syntaxe:
#mhlo.dot_algorithm<
Type, # lhsPrecisionType
Type, # rhsPrecisionType
Type, # accumulationType
int64_t, # lhsComponentCount
int64_t, # rhsComponentCount
int64_t, # numPrimitiveOperations
bool # allowImpreciseAccumulation
>
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| lhsPrecisionType | Type | |
| rhsPrecisionType | Type | |
| accumulationType | Type | |
| lhsComponentCount | int64_t | |
| rhsComponentCount | int64_t | |
| numPrimitiveOperations | int64_t | |
| allowImpreciseAccumulation | bool |
DotDimensionNumbersAttr
Attribute that models the dimension information for dot.
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| lhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | Dimension |
| rhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | Dimension |
| lhsContractingDimensions | ::llvm::ArrayRef<int64_t> | Dimension |
| rhsContractingDimensions | ::llvm::ArrayRef<int64_t> | Dimension |
FftTypeAttr
XLA fast fourier transform type.
Syntaxe:
#mhlo.fft_type<
::mlir::mhlo::FftType # value
>
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| valeur | ::mlir::mhlo::FftType | an enum of type FftType |
FusionKindAttr
Fusion kind
Syntaxe:
#mhlo.fusion_kind<
::mlir::mhlo::FusionKind # value
>
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| valeur | ::mlir::mhlo::FusionKind | an enum of type FusionKind |
GatherDimensionNumbersAttr
Attribute that models the dimension information for gather
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| offsetDims | ::llvm::ArrayRef<int64_t> | Dimension |
| collapsedSliceDims | ::llvm::ArrayRef<int64_t> | Dimension |
| operandBatchingDims | ::llvm::ArrayRef<int64_t> | Dimension |
| startIndicesBatchingDims | ::llvm::ArrayRef<int64_t> | Dimension |
| startIndexMap | ::llvm::ArrayRef<int64_t> | Dimension |
| indexVectorDim | int64_t |
OutputOperandAliasAttr
Attribute that models the alias relationship of output and operand of a CustomCall op
Syntaxe:
#mhlo.output_operand_alias<
::llvm::ArrayRef<int64_t>, # outputTupleIndices
int64_t, # operandIndex
::llvm::ArrayRef<int64_t> # operandTupleIndices
>
This attribute captures the alias relationship of the output to one of the operands for a CustomCall op, denoted by operand_index . The output_tuple_indices and operand_tuple_indices are used to index into output and operand types. These indices lists are empty if the corresponding types are not tuple types, and can be arbitrarily long in case of arbitrarily nested tuple types.
See https://www.tensorflow.org/xla/aliasing
Example when used as array with in mhlo.custom-call:
%0 = "mhlo.custom_call"(%arg0, %arg1) {
// other attributes
output_operand_alias = [
#mhlo.output_operand_alias<output_tuple_indices = [0],
operand_index = 0,
operand_tuple_indices = [1]>
]
} : (tuple<tensor<1x1xf32>, tensor<2x3xf32>>, tensor<5x5xf32>) -> tuple<tensor<2x3xf32>>
The output and the 0th operand are both tuples. The aliasing shows the
relationship between the 0th element in output tuple with the 1st element in
the 0th operand. And both of them are of the same type: tensor<2x3xf32>.
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| outputTupleIndices | ::llvm::ArrayRef<int64_t> | Dimension |
| operandIndex | int64_t | |
| operandTupleIndices | ::llvm::ArrayRef<int64_t> | Dimension |
PrecisionAttr
XLA precision for an operand. Has backend specific meaning.
Syntaxe:
#mhlo.precision<
::mlir::mhlo::Precision # value
>
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| valeur | ::mlir::mhlo::Precision | an enum of type Precision |
RaggedDotDimensionNumbersAttr
Attribute that models the dimension information for ragged dot.
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| dotDimensionNumbers | ::mlir::mhlo::DotDimensionNumbersAttr | Attribute that models the dimension information for dot. |
| lhsRaggedDimensions | ::llvm::ArrayRef<int64_t> | Dimension |
| rhsGroupDimensions | ::llvm::ArrayRef<int64_t> | Dimension |
ResultAccuracyAttr
The requested accuracy for unary ops.
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| atol | APFloat | |
| rtol | APFloat | |
| ulps | int64_t | |
| mode | ::mlir::mhlo::ResultAccuracyModeAttr | XLA result accuracy mode. |
ResultAccuracyModeAttr
XLA result accuracy mode.
Syntaxe:
#mhlo.result_accuracy_mode<
::mlir::mhlo::ResultAccuracyMode # value
>
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| valeur | ::mlir::mhlo::ResultAccuracyMode | an enum of type ResultAccuracyMode |
RngAlgorithmAttr
XLA PRNG algorithm to be used.
Syntaxe:
#mhlo.rng_algorithm<
::mlir::mhlo::RngAlgorithm # value
>
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| valeur | ::mlir::mhlo::RngAlgorithm | an enum of type RngAlgorithm |
RngDistributionAttr
XLA PRNG distribution to be used.
Syntaxe:
#mhlo.rng_distribution<
::mlir::mhlo::RngDistribution # value
>
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| valeur | ::mlir::mhlo::RngDistribution | an enum of type RngDistribution |
ScatterDimensionNumbersAttr
Attribute that models the dimension information for scatter
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| updateWindowDims | ::llvm::ArrayRef<int64_t> | Dimension |
| insertedWindowDims | ::llvm::ArrayRef<int64_t> | Dimension |
| inputBatchingDims | ::llvm::ArrayRef<int64_t> | Dimension |
| scatterIndicesBatchingDims | ::llvm::ArrayRef<int64_t> | Dimension |
| scatterDimsToOperandDims | ::llvm::ArrayRef<int64_t> | Dimension |
| indexVectorDim | int64_t |
TransposeAttr
Transpose options
Syntaxe:
#mhlo.transpose<
::mlir::mhlo::Transpose # value
>
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| valeur | ::mlir::mhlo::Transpose | an enum of type Transpose |
TypeExtensionsAttr
Attribute that extends tensor type with MHLO type properties.
Syntaxe:
#mhlo.type_extensions<
::llvm::ArrayRef<int64_t> # bounds
>
This attribute is used to extend MLIR tensor type with MHLO tensor specific properties. These properties aren't modeled in the MLIR type. This attribute is set in the encoding field of the tensor type.
See HLO_BoundedAttrInterface for documentation for bounds .
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| bornes | ::llvm::ArrayRef<int64_t> |
Types
AsyncBundleType
Opaque collection of other types
Syntaxe:
!mhlo.async_bundle<
::llvm::ArrayRef<Type> # types
>
Paramètres:
| Paramètre | C++ type | Description |
|---|---|---|
| types | ::llvm::ArrayRef<Type> |
Enums
ComparisonDirection
Which comparison operation to perform.
Cas:
| Symbole | Valeur | Chaîne |
|---|---|---|
| EQ | 0 | EQ |
| NE | 1 | NE |
| GE | 2 | GE |
| GT | 3 | GT |
| LE | 4 | LE |
| LT | 5 | LT |
ComparisonType
Which comparison type to use.
Cas:
| Symbole | Valeur | Chaîne |
|---|---|---|
| NONTYPE | 0 | NONTYPE |
| FLOTTER | 1 | FLOTTER |
| TOTALORDER | 2 | TOTALORDER |
| SIGNÉ | 3 | SIGNÉ |
| UNSIGNED | 4 | UNSIGNED |
CustomCallApiVersion
Custom call API version
Cas:
| Symbole | Valeur | Chaîne |
|---|---|---|
| API_VERSION_UNSPECIFIED | 0 | API_VERSION_UNSPECIFIED |
| API_VERSION_ORIGINAL | 1 | API_VERSION_ORIGINAL |
| API_VERSION_STATUS_RETURNING | 2 | API_VERSION_STATUS_RETURNING |
| API_VERSION_STATUS_RETURNING_UNIFIED | 3 | API_VERSION_STATUS_RETURNING_UNIFIED |
| API_VERSION_TYPED_FFI | 4 | API_VERSION_TYPED_FFI |
CustomCallSchedule
Specifies the desired schedule for the custom-call.
Cas:
| Symbole | Valeur | Chaîne |
|---|---|---|
| AUCUN | 0 | AUCUN |
| DERNIER | 1 | DERNIER |
| LE PLUS TÔT | 2 | LE PLUS TÔT |
DequantizeMode
_Dequantization mode. Only MIN COMBINED is supported.
Cas:
| Symbole | Valeur | Chaîne |
|---|---|---|
| MIN_COMBINED | 0 | MIN_COMBINED |
DomainKind
Kind of domain metatdata attached to an HLO domain.
Cas:
| Symbole | Valeur | Chaîne |
|---|---|---|
| fragmentation | 0 | fragmentation |
FftType
XLA fast fourier transform type.
Cas:
| Symbole | Valeur | Chaîne |
|---|---|---|
| FFT | 0 | FFT |
| IFFT | 1 | IFFT |
| RFFT | 2 | RFFT |
| IRFFT | 3 | IRFFT |
FusionKind
Fusion kind
Cas:
| Symbole | Valeur | Chaîne |
|---|---|---|
| kLoop | 0 | kLoop |
| kInput | 1 | kInput |
| kOutput | 2 | kOutput |
| kCustom | 3 | kCustom |
Précision
XLA precision for an operand. Has backend specific meaning.
Cas:
| Symbole | Valeur | Chaîne |
|---|---|---|
| DÉFAUT | 0 | DÉFAUT |
| HAUT | 1 | HAUT |
| LE PLUS ÉLEVÉ | 2 | LE PLUS ÉLEVÉ |
ResultAccuracyMode
XLA result accuracy mode.
Cas:
| Symbole | Valeur | Chaîne |
|---|---|---|
| DÉFAUT | 0 | DÉFAUT |
| LE PLUS ÉLEVÉ | 1 | LE PLUS ÉLEVÉ |
| TOLÉRANCE | 2 | TOLÉRANCE |
RngAlgorithm
XLA PRNG algorithm to be used.
Cas:
| Symbole | Valeur | Chaîne |
|---|---|---|
| DÉFAUT | 0 | DÉFAUT |
| THREE_FRY | 1 | THREE_FRY |
| PHILOX | 2 | PHILOX |
RngDistribution
XLA PRNG distribution to be used.
Cas:
| Symbole | Valeur | Chaîne |
|---|---|---|
| UNIFORME | 1 | UNIFORME |
| NORMALE | 2 | NORMALE |
Transposer
Transpose options
Cas:
| Symbole | Valeur | Chaîne |
|---|---|---|
| TRANSPOSE_INVALID | 0 | TRANSPOSE_INVALID |
| NO_TRANSPOSE | 1 | NO_TRANSPOSE |
| TRANSPOSER | 2 | TRANSPOSER |
| ADJOINT | 3 | ADJOINT |