「ムロ」方言

オペレーション

mhlo.abs (mhlo::AbsOp)

腹筋手術

構文:

operation ::= `mhlo.abs` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

operandテンソルに対して要素ごとの絶対値演算を実行し、 resultテンソルを生成します。

参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#abs

例:

%result = mhlo.abs %operand : tensor<3xi32>

特性: AlwaysSpeculatableImplTraitElementwiseSameOperandsAndResultShape

インターフェース: ConditionallySpeculatableInferShapedTypeOpInterfaceInferTypeOpInterfaceNoMemoryEffect (MemoryEffectOpInterface)

エフェクト: MemoryEffects::Effect{}

オペランド:

オペランド説明
operand 2/4/8/16/32/64 ビットの符号なし整数、4/6/8/16/32/64 ビットの浮動小数点数、または 32/64 ビットの浮動小数点数要素を持つ複素数、2/4/8/16/32 ビットの一様量子化符号整数、2/4/8/16/32 ビットの軸ごとに一様量子化された符号整数、2/4/8/16/32 ビットのの一様量子化符号なし整数、または 2/4/8/16/32 ビットの軸ごとに一様量子化された符号なし整数値のランク付きテンソル

結果:

結果説明
result 2/4/8/16/32/64 ビットの符号なし整数、4/6/8/16/32/64 ビットの浮動小数点数、2/4/8/16/32 ビットの一様量子化符号整数、2/4/8/16/32 ビットの軸ごとに一様量子化された符号整数、2/4/8/16/32 ビットの一様量子化符号なし整数、または 2/4/8/16/32 ビットの軸ごとに一様量子化された符号なし整数値のランク付けされたテンソル

mhlo.acos (mhlo::AcosOp)

Acos操作

構文:

operation ::= `mhlo.acos` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

operandテンソルに対して要素ごとの acos 演算を実行し、 resultテンソルを生成します。

例:

%result = mhlo.acos %operand : tensor<2x2xf32>

特性: CompatibleOperandsAndResultTypeElementwiseSameOperandsAndResultShape

インターフェース: InferShapedTypeOpInterfaceInferTypeOpInterface

オペランド:

オペランド説明
operand 4/6/8/16/32/64 ビット浮動小数点型または 32/64 ビット浮動小数点要素値を持つ複素数のテンソル

結果:

結果説明
result 4/6/8/16/32/64 ビット浮動小数点型または 32/64 ビット浮動小数点要素値を持つ複素数のテンソル

mhlo.acosh (mhlo::AcoshOp)

アコッシュ作戦

構文:

operation ::= `mhlo.acosh` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

operandテンソルに対して要素ごとの acosh 演算を実行し、 resultテンソルを生成します。

例:

%result = mhlo.acosh %operand : tensor<2x2xf32>

特性: CompatibleOperandsAndResultTypeElementwiseSameOperandsAndResultShape

インターフェース: InferShapedTypeOpInterfaceInferTypeOpInterface

オペランド:

オペランド説明
operand 4/6/8/16/32/64 ビット浮動小数点型または 32/64 ビット浮動小数点要素値を持つ複素数のテンソル

結果:

結果説明
result 4/6/8/16/32/64 ビット浮動小数点型または 32/64 ビット浮動小数点要素値を持つ複素数のテンソル

mhlo.add (mhlo::AddOp)

追加操作

構文:

operation ::= `mhlo.add` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

2 つのテンソルlhsrhsの要素ごとの加算を実行し、 resultテンソルを生成します。

参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#add

例:

%result = mhlo.add %lhs, %rhs : tensor<2x2xi32>

特性: AlwaysSpeculatableImplTraitCommutativeCompatibleOperandsAndResultTypeElementwiseSameOperandsAndResultShape

インターフェース: ConditionallySpeculatableInferShapedTypeOpInterfaceInferTypeOpInterfaceNoMemoryEffect (MemoryEffectOpInterface)

エフェクト: MemoryEffects::Effect{}

オペランド:

オペランド説明
lhs 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付けされたテンソル
rhs 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付けされたテンソル

結果:

結果説明
result 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付けされたテンソル

mhlo.add_dependency (mhlo::AddDependencyOp)

AddDependency操作

構文:

operation ::= `mhlo.add_dependency` operands attr-dict `:` functional-type(operands, results)

この操作は XLA コンパイラ専用なので、まだ仕様がありません。

非公式には、この演算はデータオペランドとトークンの2つのオペランドを持ちます。演算の出力はデータオペランドです。AfterAllと組み合わせて使用​​すると、副作用のない演算(トークン値を生成しない演算)の順序付けが可能になります。

例:

%1 = mhlo.add_dependency %arg0, %0 : (tensor<3x4xf32>, !mhlo.token) -> tensor<3x4xf32>

特性: AlwaysSpeculatableImplTrait

インターフェース: ConditionallySpeculatableInferTypeOpInterfaceNoMemoryEffect (MemoryEffectOpInterface)

エフェクト: MemoryEffects::Effect{}

オペランド:

オペランド説明
operand 4/6/8/16/32/64 ビットの浮動小数点数またはブール値のランク付けされたテンソル、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに整数で量子化された値、または軸ごとに整数で量子化された値のランク付けされたテンソル、トークン、または stablehlo トークン
tokenトークンまたはstablehloトークン

結果:

結果説明
output 4/6/8/16/32/64 ビットの浮動小数点数またはブール値のランク付けされたテンソル、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに整数で量子化された値、または軸ごとに整数で量子化された値のランク付けされたテンソル、トークン、または stablehlo トークン

mhlo.after_all (mhlo::AfterAllOp)

AfterAll操作

構文:

operation ::= `mhlo.after_all` $inputs attr-dict
              `:` custom<VariadicSameOperandsAndResultType>(ref($inputs), type($inputs), type($result))

inputsを生成する操作が、 resultに依存する操作の前に実行されることを保証します。

参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all

例:

%result = mhlo.after_all %input0, %input1 : !mhlo.token

特性: AlwaysSpeculatableImplTrait

インターフェース: ConditionallySpeculatableInferTypeOpInterfaceNoMemoryEffect (MemoryEffectOpInterface)

エフェクト: MemoryEffects::Effect{}

オペランド:

オペランド説明
inputsトークンの可変長引数

結果:

結果説明
resultトークン

mhlo.all_gather (mhlo::AllGatherOp)

AllGather操作

プロセスグリッド内の各プロセスグループにおいて、各プロセスのオペランドテンソルの値をall_gather_dimに沿って連結し、結果テンソルを生成します。このcomputation operands内の各オペランドに対して個別に適用され、オペランドごとに1つの結果が生成されます。

参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_gather

例:

%result = "mhlo.all_gather"(%operand) {
  all_gather_dim = 1 : i64,
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
  // channel_id = 0
  channel_handle = #mhlo.channel_handle<handle = 0, type = 0>,
  // use_global_device_ids = false
} : (tensor<2x2xf32>) -> tensor<2x4xf32>

特性: SameOperandsAndResultElementType

属性:

属性MLIRタイプ説明
all_gather_dim ::mlir::整数属性値が負でない64ビットの符号なし整数属性
replica_groups ::mlir::DenseIntElementsAttr 64ビット符号なし整数要素属性
channel_handle ::mlir::mhlo::チャネルハンドル属性2つの64ビット整数「ハンドル」と「タイプ」
use_global_device_ids ::mlir::ユニット属性ユニット属性

オペランド:

オペランド説明
operands 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数、または 32/64 ビットの浮動小数点数要素を持つ複素数、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付きテンソルの可変長引数

結果:

結果説明
「無名」 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数、または 32/64 ビットの浮動小数点数要素を持つ複素数、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付きテンソルの可変長引数

mhlo.all_reduce (mhlo::AllReduceOp)

AllReduce操作

プロセスグリッド内の各プロセスグループ内で、各プロセスのオペランドテンソルの値にリダクション関数のcomputationを適用し、結果テンソルを生成します。 computation operands内の各オペランドに対して個別に適用され、オペランドごとに1つの結果が生成されます。

参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce

例:

%result = "mhlo.all_reduce"(%operand) ({
  ^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
    %0 = mhlo.add %arg1, %arg2 : tensor<f32>
    mhlo.return %0 : tensor<f32>
}) {
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
  // channel_id = 0
  channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
  // use_global_device_ids = false
} : (tensor<4xf32>) -> tensor<4xf32>

特性: InferTensorTypeSingleBlockImplicitTerminator<ReturnOp>SingleBlock

インターフェース: InferShapedTypeOpInterfaceInferTypeOpInterface

属性:

属性MLIRタイプ説明
replica_groups ::mlir::DenseIntElementsAttr 64ビット符号なし整数要素属性
channel_handle ::mlir::mhlo::チャネルハンドル属性2つの64ビット整数「ハンドル」と「タイプ」
use_global_device_ids ::mlir::ユニット属性ユニット属性

オペランド:

オペランド説明
operands 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数、または 32/64 ビットの浮動小数点数要素を持つ複素数、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付きテンソルの可変長引数

結果:

結果説明
「無名」 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数、または 32/64 ビットの浮動小数点数要素を持つ複素数、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付きテンソルの可変長引数

mhlo.all_to_all (mhlo::AllToAllOp)

AllToAll操作

プロセス グリッドの各プロセス グループ内で、 operandテンソルの値をsplit_dimensionに沿って部分に分割し、分割された部分をプロセス間に分散し、分散された部分をconcat_dimensionに沿って連結して、 resultテンソルを生成します。

参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_to_all

例:

%result = "mhlo.all_to_all"(%operand) {
  split_dimension = 1 : i64,
  concat_dimension = 0 : i64,
  split_count = 2 : i64,
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<2x4xf32>) -> tensor<4x2xf32>

特性: AlwaysSpeculatableImplTraitInferTensorTypeSameOperandsElementTypeSameOperandsShapeSameVariadicOperandSize

インターフェース: ConditionallySpeculatableInferShapedTypeOpInterfaceInferTypeOpInterfaceNoMemoryEffect (MemoryEffectOpInterface)

エフェクト: MemoryEffects::Effect{}

属性:

属性MLIRタイプ説明
split_dimension ::mlir::整数属性値が負でない64ビットの符号なし整数属性
concat_dimension ::mlir::整数属性値が負でない64ビットの符号なし整数属性
split_count ::mlir::整数属性正の値が入る64ビットの符号なし整数属性
replica_groups ::mlir::DenseIntElementsAttr 64ビット符号なし整数要素属性
channel_handle ::mlir::mhlo::チャネルハンドル属性2つの64ビット整数「ハンドル」と「タイプ」

オペランド:

オペランド説明
operand 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数、または 32/64 ビットの浮動小数点数要素を持つ複素数、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付きテンソルの可変長引数

結果:

結果説明
「無名」 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数、または 32/64 ビットの浮動小数点数要素を持つ複素数、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付きテンソルの可変長引数

mhlo.and (mhlo::AndOp)

そして操作

構文:

operation ::= `mhlo.and` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

2つのテンソルlhsrhsの要素ごとのANDを実行し、 resultテンソルを生成します。

参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#and

例:

%result = mhlo.and %lhs, %rhs : tensor<2x2xi32>

特性: AlwaysSpeculatableImplTraitCommutativeCompatibleOperandsAndResultTypeElementwiseSameOperandsAndResultShape

インターフェース: ConditionallySpeculatableInferShapedTypeOpInterfaceInferTypeOpInterfaceNoMemoryEffect (MemoryEffectOpInterface)

エフェクト: MemoryEffects::Effect{}

オペランド:

オペランド説明
lhs bool または 2/4/8/16/32/64 ビット整数値のランク付きテンソル
rhs bool または 2/4/8/16/32/64 ビット整数値のランク付きテンソル

結果:

結果説明
result 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付けされたテンソル

mhlo.asin (mhlo::AsinOp)

ASIN操作

構文:

operation ::= `mhlo.asin` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

operandテンソルに対して要素ごとの asin 演算を実行し、 resultテンソルを生成します。

例:

%result = mhlo.asin %operand : tensor<2x2xf32>

特性: CompatibleOperandsAndResultTypeElementwiseSameOperandsAndResultShape

インターフェース: InferShapedTypeOpInterfaceInferTypeOpInterface

オペランド:

オペランド説明
operand 4/6/8/16/32/64 ビット浮動小数点型または 32/64 ビット浮動小数点要素値を持つ複素数のテンソル

結果:

結果説明
result 4/6/8/16/32/64 ビット浮動小数点型または 32/64 ビット浮動小数点要素値を持つ複素数のテンソル

mhlo.asinh (mhlo::AsinhOp)

アシン作戦

構文:

operation ::= `mhlo.asinh` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

operandテンソルに対して要素ごとの asinh 演算を実行し、 resultテンソルを生成します。

例:

%result = mhlo.asinh %operand : tensor<2x2xf32>

特性: CompatibleOperandsAndResultTypeElementwiseSameOperandsAndResultShape

インターフェース: InferShapedTypeOpInterfaceInferTypeOpInterface

オペランド:

オペランド説明
operand 4/6/8/16/32/64 ビット浮動小数点型または 32/64 ビット浮動小数点要素値を持つ複素数のテンソル

結果:

結果説明
result 4/6/8/16/32/64 ビット浮動小数点型または 32/64 ビット浮動小数点要素値を持つ複素数のテンソル

mhlo.async_done (mhlo::AsyncDoneOp)

AsyncDone操作

この操作は XLA コンパイラ専用なので、まだ仕様がありません。

非公式には、この操作は非同期計算が終了するまでブロックし、非同期計算の最終結果を返します。

詳細については、AsyncStart のドキュメントを参照してください。

インターフェース: InferTypeOpInterface

オペランド:

オペランド説明
bundle 4/6/8/16/32/64 ビットの float または bool のランク付けされたテンソル、または 2/4/8/16/32/64 ビットの整数、または 32/64 ビットの float 要素を持つ複素数、またはテンソルごとに量子化された整数値、軸ごとに量子化された整数値、トークン値、または stablehlo トークン値の任意の組み合わせを持つ async_bundle

結果:

結果説明
「無名」 4/6/8/16/32/64 ビットの float または bool のランク付けされたテンソル、または 32/64 ビットの float 要素を持つ 2/4/8/16/32/64 ビットの整数または複素数、またはテンソルごとに量子化された整数値、軸ごとに量子化された整数値、またはトークン、stablehlo トークン、または 4/6/8/16/32/64 ビットの float または bool のランク付けされたテンソル、または 32/64 ビットの float 要素を持つ 2/4/8/16/32/64 ビットの整数または複素数、またはテンソルごとに量子化された整数値、または 4/6/8/16/32/64 ビットの float または bool の memref、または 32/64 ビットの float 要素を持つ 2/4/8/16/32/64 ビットの整数または複素数、またはテンソルごとに量子化された整数値、またはランク付けされたテンソルの任意の組み合わせを持つネストされたタプル軸ごとの整数量子化値またはトークン値

mhlo.async_start (mhlo::AsyncStartOp)

AsyncStart操作

この操作は XLA コンパイラ専用なので、まだ仕様がありません。

非公式には、この操作は非同期計算を開始します。

これは、非同期待機(DMAなど)とオンスレッド計算の両方を含む関数がある場合に使用されます。例えば、関数が計算、DMA、別の計算、2番目のDMA、そして最後の計算で構成されるとします。これは、async_start、async_update、async_doneの順に記述されます。async_startはオンスレッドで最初の計算を実行し、その後DMAを開始します。async_updateは、DMAがまだ完了していない場合は完了を待機し、関数内の2番目の計算を実行して2番目のDMAを開始します。最後に、async_doneは最後のDMAを待機し、オンスレッドで実行する必要がある最後の計算を実行し、その最終計算の結果を返します。

operands計算に直接渡されますcalled_computation非同期に実行される関数です。execution_thread execution_thread実行されるスレッドの名前です。メインスレッドは「main」と呼ばれます。すべてのスレッドには名前があります。

これは非同期処理間で必要なすべての状態を返します。バッファへの代入後、戻り値は入力、結果、そして非同期処理で必要または編集されたスクラッチパッドを保持するために必要な領域を表します。

属性:

属性MLIRタイプ説明
called_computation ::mlir::フラットシンボル参照属性フラットシンボル参照属性
execution_thread ::mlir::文字列属性文字列属性

オペランド:

オペランド説明
inputs 4/6/8/16/32/64 ビットの float または bool のランク付けされたテンソル、または 32/64 ビットの float 要素を持つ 2/4/8/16/32/64 ビットの整数または複素数、またはテンソルごとに量子化された整数値、軸ごとに量子化された整数値、またはトークン、stablehlo トークン、または 4/6/8/16/32/64 ビットの float または bool のランク付けされたテンソル、または 32/64 ビットの float 要素を持つ 2/4/8/16/32/64 ビットの整数または複素数、またはテンソルごとに量子化された整数値、または 4/6/8/16/32/64 ビットの float または bool の memref、または 32/64 ビットの float 要素を持つ 2/4/8/16/32/64 ビットの整数または複素数、またはテンソルごとに量子化された整数値、またはランク付けされたテンソルの任意の組み合わせを持つネストされたタプル軸ごとの整数量子化値またはトークン値

結果:

結果説明
「無名」 4/6/8/16/32/64 ビットの float または bool のランク付けされたテンソル、または 2/4/8/16/32/64 ビットの整数、または 32/64 ビットの float 要素を持つ複素数、またはテンソルごとに量子化された整数値、軸ごとに量子化された整数値、トークン値、または stablehlo トークン値の任意の組み合わせを持つ async_bundle

mhlo.async_update (mhlo::AsyncUpdateOp)

AsyncUpdate操作

この操作は XLA コンパイラ専用なので、まだ仕様がありません。

非公式には、この操作は同期バリアに到達するまで非同期計算をブロックします。操作後にbundleを返します。

詳細については、AsyncStart のドキュメントを参照してください。

インターフェース: InferTypeOpInterface

オペランド:

オペランド説明
bundle 4/6/8/16/32/64 ビットの float または bool のランク付けされたテンソル、または 2/4/8/16/32/64 ビットの整数、または 32/64 ビットの float 要素を持つ複素数、またはテンソルごとに量子化された整数値、軸ごとに量子化された整数値、トークン値、または stablehlo トークン値の任意の組み合わせを持つ async_bundle

結果:

結果説明
「無名」 4/6/8/16/32/64 ビットの float または bool のランク付けされたテンソル、または 2/4/8/16/32/64 ビットの整数、または 32/64 ビットの float 要素を持つ複素数、またはテンソルごとに量子化された整数値、軸ごとに量子化された整数値、トークン値、または stablehlo トークン値の任意の組み合わせを持つ async_bundle

mhlo.atan2 (mhlo::Atan2Op)

Atan2操作

構文:

operation ::= `mhlo.atan2` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

lhsおよびrhsテンソルに対して要素ごとに atan2 演算を実行し、 resultテンソルを生成します。

参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#atan2

例:

%result = mhlo.atan2 %lhs, %rhs : tensor<3xf32>

特性: AlwaysSpeculatableImplTraitCompatibleOperandsAndResultTypeElementwiseSameOperandsAndResultShape

インターフェース: ConditionallySpeculatableInferShapedTypeOpInterfaceInferTypeOpInterfaceNoMemoryEffect (MemoryEffectOpInterface)

エフェクト: MemoryEffects::Effect{}

オペランド:

オペランド説明
lhs 4/6/8/16/32/64 ビット浮動小数点数または 32/64 ビット浮動小数点数要素またはテンソルごとに量子化された整数値を持つ複素数のランク付きテンソル
rhs 4/6/8/16/32/64 ビット浮動小数点数または 32/64 ビット浮動小数点数要素またはテンソルごとに量子化された整数値を持つ複素数のランク付きテンソル

結果:

結果説明
result 4/6/8/16/32/64 ビット浮動小数点数または 32/64 ビット浮動小数点数要素またはテンソルごとに量子化された整数値を持つ複素数のランク付きテンソル

mhlo.atanh (mhlo::AtanhOp)

アタン作戦

構文:

operation ::= `mhlo.atanh` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

operandテンソルに対して要素ごとの atanh 演算を実行し、 resultテンソルを生成します。

例:

%result = mhlo.atanh %operand : tensor<2x2xf32>

特性: CompatibleOperandsAndResultTypeElementwiseSameOperandsAndResultShape

インターフェース: InferShapedTypeOpInterfaceInferTypeOpInterface

オペランド:

オペランド説明
operand 4/6/8/16/32/64 ビット浮動小数点型または 32/64 ビット浮動小数点要素値を持つ複素数のテンソル

結果:

結果説明
result 4/6/8/16/32/64 ビット浮動小数点型または 32/64 ビット浮動小数点要素値を持つ複素数のテンソル

mhlo.batch_norm_grad (mhlo::BatchNormGradOp)

BatchNormGrad操作

grad_outputからバックプロパゲーションする BatchNormTrainingOp の複数の入力の勾配を計算し、 grad_operandgrad_scale 、およびgrad_offsetテンソルを生成します。

参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_grad

例:

%grad_operand, %grad_scale, %grad_offset =
"mhlo.batch_norm_grad"(%operand, %scale, %mean, %variance, %grad_output) {
  epsilon = 0.0 : f32,
  feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>,
    tensor<2x2x2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)

特性: AlwaysSpeculatableImplTraitInferTensorType

インターフェース: ConditionallySpeculatableInferShapedTypeOpInterfaceInferTypeOpInterfaceNoMemoryEffect (MemoryEffectOpInterface)

エフェクト: MemoryEffects::Effect{}

属性:

属性MLIRタイプ説明
epsilon ::mlir::FloatAttr 32ビット浮動小数点属性
feature_index ::mlir::整数属性値が負でない64ビットの符号なし整数属性

オペランド:

オペランド説明
operand 4/6/8/16/32/64ビット浮動小数点値のランク付きテンソル
scale 4/6/8/16/32/64 ビット浮動小数点値の 1D テンソル
mean 4/6/8/16/32/64 ビット浮動小数点値の 1D テンソル
variance 4/6/8/16/32/64 ビット浮動小数点値の 1D テンソル
grad_output 4/6/8/16/32/64ビット浮動小数点値のランク付きテンソル

結果:

結果説明
grad_operand 4/6/8/16/32/64ビット浮動小数点値のランク付きテンソル
grad_scale 4/6/8/16/32/64 ビット浮動小数点値の 1D テンソル
grad_offset 4/6/8/16/32/64 ビット浮動小数点値の 1D テンソル

mhlo.batch_norm_inference (mhlo::BatchNormInferenceOp)

BatchNormInference操作

feature_index次元を除くすべての次元にわたってoperandテンソルを正規化し、 resultテンソルを生成します。

参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_inference

例:

%result = "mhlo.batch_norm_inference"(%operand, %scale, %offset, %mean, %variance) {
  epsilon = 0.0 : f32,
  feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>) -> tensor<2x2x2xf32>

特性: AlwaysSpeculatableImplTraitInferTensorType

インターフェース: ConditionallySpeculatableInferShapedTypeOpInterfaceInferTypeOpInterfaceNoMemoryEffect (MemoryEffectOpInterface)

エフェクト: MemoryEffects::Effect{}

属性:

属性MLIRタイプ説明
epsilon ::mlir::FloatAttr 32ビット浮動小数点属性
feature_index ::mlir::整数属性値が負でない64ビットの符号なし整数属性

オペランド:

オペランド説明
operand 4/6/8/16/32/64ビット浮動小数点値のランク付きテンソル
scale 4/6/8/16/32/64 ビット浮動小数点値の 1D テンソル
offset 4/6/8/16/32/64 ビット浮動小数点値の 1D テンソル
mean 4/6/8/16/32/64 ビット浮動小数点値の 1D テンソル
variance 4/6/8/16/32/64 ビット浮動小数点値の 1D テンソル

結果:

結果説明
result 4/6/8/16/32/64ビット浮動小数点値のランク付けされたテンソル

mhlo.batch_norm_training (mhlo::BatchNormTrainingOp)

BatchNormTraining操作

バッチ次元と空間次元全体の平均と分散を計算し、 feature_index次元の各特徴に対してoperandテンソルを正規化して、 outputbatch_meanbatch_varテンソルを生成します。

参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_training

例:

%output, %batch_mean, %batch_var = "mhlo.batch_norm_training"(%operand, %scale, %offset) {
  epsilon = 0.0 : f32,
  feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)

特性: AlwaysSpeculatableImplTraitInferTensorType

インターフェース: ConditionallySpeculatableInferShapedTypeOpInterfaceInferTypeOpInterfaceNoMemoryEffect (MemoryEffectOpInterface)

エフェクト: MemoryEffects::Effect{}

属性:

属性MLIRタイプ説明
epsilon ::mlir::FloatAttr 32ビット浮動小数点属性
feature_index ::mlir::整数属性値が負でない64ビットの符号なし整数属性

オペランド:

オペランド説明
operand 4/6/8/16/32/64ビット浮動小数点値のランク付きテンソル
scale 4/6/8/16/32/64 ビット浮動小数点値の 1D テンソル
offset 4/6/8/16/32/64 ビット浮動小数点値の 1D テンソル

結果:

結果説明
output 4/6/8/16/32/64ビット浮動小数点値のランク付きテンソル
batch_mean 4/6/8/16/32/64 ビット浮動小数点値の 1D テンソル
batch_var 4/6/8/16/32/64 ビット浮動小数点値の 1D テンソル

mhlo.bitcast (mhlo::BitcastOp)

ビットキャスト操作

構文:

operation ::= `mhlo.bitcast` operands attr-dict `:` functional-type(operands, results)

この操作は XLA コンパイラ専用なので、まだ仕様がありません。

非公式には、この操作は要素の物理的な配置を変更せずに入力の形状を変更します。

この操作では、「要素の物理的な配置」を理解するためにレイアウト情報が必要であり、MHLO でのレイアウト サポートは現在進行中です。

例:

%0 = mhlo.bitcast %arg0 : (tensor<3x4xf32>) -> tensor<3x4x1xf32>

特性: AlwaysSpeculatableImplTrait

インターフェース: ConditionallySpeculatableNoMemoryEffect (MemoryEffectOpInterface)

エフェクト: MemoryEffects::Effect{}

オペランド:

オペランド説明
operand 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付けされたテンソル

結果:

結果説明
「無名」 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付けされたテンソル

mhlo.bitcast_convert (mhlo::BitcastConvertOp)

BitcastConvert操作

構文:

operation ::= `mhlo.bitcast_convert` operands attr-dict `:` functional-type(operands, results)

operandテンソルに対してビットキャスト演算を実行し、 resultテンソルの型を使用してoperandテンソル全体のビットが再解釈されたresultテンソルを生成します。

参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#bitcast_convert

例:

%result = mhlo.bitcast_convert %operand : (tensor<2xf32>) -> tensor<2x4xi8>

特性: AlwaysSpeculatableImplTrait

インターフェース: ConditionallySpeculatableInferShapedTypeOpInterfaceNoMemoryEffect (MemoryEffectOpInterface)

エフェクト: MemoryEffects::Effect{}

オペランド:

オペランド説明
operand 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付けされたテンソル

結果:

結果説明
「無名」 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付けされたテンソル

mhlo.broadcast (mhlo::BroadcastOp)

放送操作

この操作は StableHLO から削除される予定であるため、仕様には含まれていません: https://github.com/openxla/stablehlo/issues/3

非公式には、この操作は XLA のブロードキャストと同じことを行います: https://www.tensorflow.org/xla/operation_semantics#broadcast

例:

%result = mhlo.broadcast %operand, sizes = [1, 2] : (tensor<3xi32>) -> tensor<1x2x3xi32>

特性: AlwaysSpeculatableImplTraitInferTensorTypeSameOperandsAndResultElementType

インターフェース: ConditionallySpeculatableInferShapedTypeOpInterfaceInferTypeOpInterfaceNoMemoryEffect (MemoryEffectOpInterface)

エフェクト: MemoryEffects::Effect{}

属性:

属性MLIRタイプ説明
broadcast_sizes ::mlir::DenseIntElementsAttr 64ビット符号なし整数要素属性

オペランド:

オペランド説明
operand 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付けされたテンソル

結果:

結果説明
「無名」 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付けされたテンソル

mhlo.broadcast_in_dim (mhlo::BroadcastInDimOp)

BroadcastInDim操作

operandテンソルのデータを複製して入力テンソルの次元やランクを拡張し、 resultテンソルを生成します。

参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#broadcast_in_dim

例:

%result = mhlo.broadcast_in_dim %operand, dims = [2, 1] : (tensor<1x3xi32>) -> tensor<2x3x2xi32>

特性: AlwaysSpeculatableImplTraitHLO_CompatibleOperandsAndResultElementType

インターフェース: ConditionallySpeculatableNoMemoryEffect (MemoryEffectOpInterface)

エフェクト: MemoryEffects::Effect{}

属性:

属性MLIRタイプ説明
broadcast_dimensions ::mlir::DenseIntElementsAttr 64ビット符号なし整数要素属性

オペランド:

オペランド説明
operand 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付けされたテンソル

結果:

結果説明
「無名」静的に形作られた、または単一の境界次元テンソル。4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数、または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値

mhlo.case (mhlo::CaseOp)

ケース操作

indexの値に応じて、 branchesから 1 つのfunctionだけを実行して出力を生成します。

参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#case

例:

%result0, %result1 = "mhlo.case"(%index) ({
  mhlo.return %result_branch0, %result_branch0 : tensor<2xi64>, tensor<2xi64>
}, {
  mhlo.return %result_branch1, %result_branch1 : tensor<2xi64>, tensor<2xi64>
}) : (tensor<i32>) -> (tensor<2xi64>, tensor<2xi64>)

特性: RecursiveMemoryEffectsSingleBlockImplicitTerminator<ReturnOp>SingleBlock

インターフェース: InferTypeOpInterface

オペランド:

オペランド説明
index 32ビットの符号なし整数値のテンソル

結果:

結果説明
「無名」 4/6/8/16/32/64 ビットの浮動小数点数またはブール値のランク付きテンソル、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに整数で量子化された値、または軸ごとに整数で量子化された値またはトークンのランク付きテンソルの可変長引数

mhlo.cbrt (mhlo::CbrtOp)

CBRT操作

構文:

operation ::= `mhlo.cbrt` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

operandテンソルに対して要素ごとの 3 次根演算を実行し、 resultテンソルを生成します。

参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cbrt

例:

%result = mhlo.cbrt %operand : tensor<4xf32>

特性: AlwaysSpeculatableImplTraitCompatibleOperandsAndResultTypeElementwiseSameOperandsAndResultShape

インターフェース: ConditionallySpeculatableInferShapedTypeOpInterfaceInferTypeOpInterfaceNoMemoryEffect (MemoryEffectOpInterface)

エフェクト: MemoryEffects::Effect{}

属性:

属性MLIRタイプ説明
result_accuracy ::mlir::mhlo::結果精度属性単項演算に要求される精度。

オペランド:

オペランド説明
operand 4/6/8/16/32/64 ビット浮動小数点型または 32/64 ビット浮動小数点型要素またはテンソルごとに量子化された整数値を持つ複素数のランク付きテンソル

結果:

結果説明
result 4/6/8/16/32/64 ビット浮動小数点型または 32/64 ビット浮動小数点型要素またはテンソルごとに量子化された整数値を持つ複素数のランク付きテンソル

mhlo.ceil (mhlo::CeilOp)

天井操作

構文:

operation ::= `mhlo.ceil` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

operandテンソルの要素ごとの ceil を実行し、 resultテンソルを生成します。

参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#ceil

例:

%result = mhlo.ceil %operand : tensor<5xf32>

特性: AlwaysSpeculatableImplTraitCompatibleOperandsAndResultTypeElementwiseSameOperandsAndResultShape

インターフェース: ConditionallySpeculatableInferShapedTypeOpInterfaceInferTypeOpInterfaceNoMemoryEffect (MemoryEffectOpInterface)

エフェクト: MemoryEffects::Effect{}

オペランド:

オペランド説明
operand 4/6/8/16/32/64 ビットの浮動小数点数またはテンソルごとの整数量子化値のランク付けされたテンソル

結果:

結果説明
result 4/6/8/16/32/64 ビットの浮動小数点数またはテンソルごとの整数量子化値のランク付けされたテンソル

mhlo.cholesky (mhlo::CholeskyOp)

コレスキー操作

一連の行列のコレスキー分解を計算します。

参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cholesky

例:

%result = mhlo.cholesky %a, lower = true : tensor<3x3xf32>

特性: AlwaysSpeculatableImplTraitInferTensorTypeSameOperandsAndResultElementType

インターフェース: ConditionallySpeculatableInferShapedTypeOpInterfaceInferTypeOpInterfaceNoMemoryEffect (MemoryEffectOpInterface)

エフェクト: MemoryEffects::Effect{}

属性:

属性MLIRタイプ説明
lower ::mlir::ブール属性bool属性

オペランド:

オペランド説明
a 4/6/8/16/32/64 ビット浮動小数点型または 32/64 ビット浮動小数点型要素値を持つ複素数のランク付きテンソル

結果:

結果説明
「無名」 4/6/8/16/32/64 ビット浮動小数点型または 32/64 ビット浮動小数点型要素値を持つ複素数のランク付きテンソル

mhlo.clamp (mhlo::ClampOp)

クランプ操作

構文:

operation ::= `mhlo.clamp` $min `,` $operand `,` $max attr-dict
              `:` custom<SameOperandsAndResultType>(type($min), type($operand), type($max), type($result))

operandテンソルのすべての要素を最小値と最大値の間でクランプし、 resultテンソルを生成します。

参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#clamp

例:

%result = mhlo.clamp %min, %operand, %max : tensor<3xi32>

特性: AlwaysSpeculatableImplTraitHLO_BroadcastingElementwiseInferTensorTypeSameOperandsAndResultElementType

インターフェース: ConditionallySpeculatableInferShapedTypeOpInterfaceInferTypeOpInterfaceNoMemoryEffect (MemoryEffectOpInterface)

エフェクト: MemoryEffects::Effect{}

オペランド:

オペランド説明
min 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付けされたテンソル
operand 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付けされたテンソル
max 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付けされたテンソル

結果:

結果説明
result 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付けされたテンソル

mhlo.collective_broadcast (mhlo::CollectiveBroadcastOp)

CollectiveBroadcast 運用

プロセス グリッドの各プロセス グループ内で、 operandテンソルの値をソース プロセスからターゲット プロセスに送信し、 resultテンソルを生成します。

参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_broadcast

例:

%result = "mhlo.collective_broadcast"(%operand) {
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
  channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<1x2xi64>) -> tensor<1x2xi64>

特性: CompatibleOperandsAndResultType

インターフェース: InferShapedTypeOpInterfaceInferTypeOpInterface

属性:

属性MLIRタイプ説明
replica_groups ::mlir::DenseIntElementsAttr 64ビット符号なし整数要素属性
channel_handle ::mlir::mhlo::チャネルハンドル属性2つの64ビット整数「ハンドル」と「タイプ」

オペランド:

オペランド説明
operand 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付けされたテンソル

結果:

結果説明
「無名」 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付けされたテンソル

mhlo.collective_permute (mhlo::CollectivePermuteOp)

CollectivePermute 操作

プロセス グリッド内の各プロセス グループ内で、 operandテンソルの値をソース プロセスからターゲット プロセスに送信し、 resultテンソルを生成します。

参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_permute

例:

%result = "mhlo.collective_permute"(%operand) {
  source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>,
  // channel_id = 0
  channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<4x2xf32>) -> tensor<4x2xf32>

特性: AlwaysSpeculatableImplTraitCompatibleOperandsAndResultType

インターフェース: ConditionallySpeculatableInferShapedTypeOpInterfaceInferTypeOpInterfaceNoMemoryEffect (MemoryEffectOpInterface)

エフェクト: MemoryEffects::Effect{}

属性:

属性MLIRタイプ説明
source_target_pairs ::mlir::DenseIntElementsAttr 64ビット符号なし整数要素属性
channel_handle ::mlir::mhlo::チャネルハンドル属性2つの64ビット整数「ハンドル」と「タイプ」

オペランド:

オペランド説明
operand 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付けされたテンソル

結果:

結果説明
「無名」 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付けされたテンソル

mhlo.compare (mhlo::CompareOp)

比較操作

構文:

operation ::= `mhlo.compare` $comparison_direction `,` $lhs `,` $rhs (`,` $compare_type^)?
              attr-dict `:` functional-type(operands, results)

comparison_directioncompare_typeに従ってlhsrhsテンソルの要素ごとの比較を実行し、 resultテンソルを生成します。

参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#compare

例:

%result = mhlo.compare LT, %lhs, %rhs, FLOAT : (tensor<2xf32>, tensor<2xf32>) -> tensor<2xi1>

特性: AlwaysSpeculatableImplTraitElementwiseInferTensorTypeSameOperandsAndResultShapeSameOperandsElementType

インターフェース: ConditionallySpeculatableInferShapedTypeOpInterfaceInferTypeOpInterfaceNoMemoryEffect (MemoryEffectOpInterface)

エフェクト: MemoryEffects::Effect{}

属性:

属性MLIRタイプ説明
comparison_direction ::mlir::mhlo::比較方向属性実行する比較演算。
compare_type ::mlir::mhlo::ComparisonTypeAttr使用する比較タイプ。

オペランド:

オペランド説明
lhs 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付けされたテンソル
rhs 4/6/8/16/32/64 ビットの浮動小数点数またはブール値、または 2/4/8/16/32/64 ビットの整数または 32/64 ビットの浮動小数点数要素を持つ複素数型、またはテンソルごとに量子化された整数値、または軸ごとに量子化された整数値のランク付けされたテンソル

結果:

結果説明
「無名」ブール値のランク付きテンソル

mhlo.complex (mhlo::ComplexOp)

複雑な操作

構文:

operation ::= `mhlo.complex` operands attr-dict
              `:` custom<ComplexOpType>(type($lhs), type($rhs), type($result))

実数値と虚数値のペア ( lhsrhs ) から複素数値への要素単位の変換を実行し、 resultテンソルを生成します。

参照: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#complex

例:

%result = mhlo.complex %lhs, %rhs : tensor<2xcomplex<f32>>

特性: AlwaysSpeculatableImplTraitElementwiseSameOperandsAndResultShapeSameOperandsElementType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
lhs ranked tensor of 32/64-bit float values
rhs ranked tensor of 32/64-bit float values

結果:

結果説明
result ranked tensor of complex type with 32/64-bit float elements values

mhlo.composite (mhlo::CompositeOp)

Composite operation

構文:

operation ::= `mhlo.composite` $name $inputs attr-dict `:` functional-type(operands, results)

Encapsulates an operation made up (composed) of other StableHLO operations, taking inputs and composite_attributes and producing results . The semantics of the op are implemented by the decomposition attribute. The composite op can be replaced with its decomposition without changing program semantics. In cases where inlining the decomposition does not provide the same op semantics, prefer using custom_call .

The version field (defaults to 0 ) is used to denote when a composite's semantics change.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#composite

例:

%results = mhlo.composite "my.op" %arg0, %arg1 {
  decomposition = @my_op,
  composite_attributes = { my_attribute = "my_value" },
  version = 1 : i32
} : (tensor<f32>, tensor<f32>) -> tensor<f32>

Interfaces: SymbolUserOpInterface

Attributes:

属性MLIR Type説明
name ::mlir::StringAttr string attribute
composite_attributes ::mlir::DictionaryAttr dictionary of named attribute values
decomposition ::mlir::FlatSymbolRefAttr flat symbol reference attribute
version ::mlir::IntegerAttr 32-bit signless integer attribute

Operands:

オペランド説明
inputs variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values

結果:

結果説明
«unnamed» variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values

mhlo.concatenate (mhlo::ConcatenateOp)

Concatenate operation

Concatenates a variadic number of tensors in inputs along dimension dimension in the same order as the given arguments and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#concatenate

例:

%result = mhlo.concatenate %input0, %input1, dim = 0 : (tensor<3x2xi64>, tensor<1x2xi64>) -> tensor<4x2xi64>

Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
dimension ::mlir::IntegerAttr 64-bit signless integer attribute whose value is non-negative

Operands:

オペランド説明
val variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.constant (mhlo::ConstantOp)

Constant operation

Produces an output tensor from a constant value .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#constant

例:

%output = mhlo.constant dense<[[0.0, 1.0], [2.0, 3.0]]> : tensor<2x2xf32>

Traits: AlwaysSpeculatableImplTrait , ConstantLike

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
value ::mlir::ElementsAttr constant vector/tensor attribute

結果:

結果説明
output statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.convert (mhlo::ConvertOp)

Convert operation

構文:

operation ::= `mhlo.convert` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs an element-wise conversion from one element type to another on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convert

例:

%result = mhlo.convert %operand : (tensor<3xi32>) -> tensor<3xcomplex<f32>>

Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.convolution (mhlo::ConvolutionOp)

Convolution operation

構文:

operation ::= `mhlo.convolution` `(`operands`)`
              `dim_numbers` `=` custom<ConvolutionDimensions>($dimension_numbers) `,`
              `window` `=` `{` custom<WindowAttributes>($window_strides, $padding,
              $lhs_dilation, $rhs_dilation,
              $window_reversal) `}`
              attr-dict `:` functional-type(operands, results)

Computes dot products between windows of lhs and slices of rhs and produces result .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution

例:

%result = "mhlo.convolution"(%lhs, %rhs) {
  window_strides = dense<4> : tensor<2xi64>,
  padding = dense<0> : tensor<2x2xi64>,
  lhs_dilation = dense<2> : tensor<2xi64>,
  rhs_dilation = dense<1> : tensor<2xi64>,
  window_reversal = dense<false> : tensor<2xi1>,
  dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
  feature_group_count = 1 : i64,
  batch_group_count = 1 : i64,
  precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>) -> tensor<1x2x2x1xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
window_strides ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
padding ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
lhs_dilation ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
rhs_dilation ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
window_reversal ::mlir::DenseElementsAttr constant boolean vector/tensor attribute
dimension_numbers ::mlir::mhlo::ConvDimensionNumbersAttr Structure of dimension information for conv op
feature_group_count ::mlir::IntegerAttr 64-bit signless integer attribute whose value is positive
batch_group_count ::mlir::IntegerAttr 64-bit signless integer attribute whose value is positive
precision_config ::mlir::ArrayAttr Precision Config attribute

Operands:

オペランド説明
lhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.copy (mhlo::CopyOp)

Copy operation

構文:

operation ::= `mhlo.copy` operands attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

This operation is private to the XLA compiler, so it is does not yet have a specification.

Informally, this operation a copy of operand . Depending on the metadata attached to the operation, it can behave quite differently from a no-op.

例:

%0 = mhlo.copy %arg0 : tensor<f32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
cross_program_prefetch_index ::mlir::IntegerAttr 32-bit signless integer attribute

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values

mhlo.cosh (mhlo::CoshOp)

Cosh operation

構文:

operation ::= `mhlo.cosh` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise cosh operation on operand tensor and produces a result tensor.

例:

%result = mhlo.cosh %operand : tensor<2x2xf32>

Traits: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Operands:

オペランド説明
operand tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values

結果:

結果説明
result tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values

mhlo.cosine (mhlo::CosineOp)

Cosine operation

構文:

operation ::= `mhlo.cosine` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise cosine operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cosine

例:

%result = mhlo.cosine %operand : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
result_accuracy ::mlir::mhlo::ResultAccuracyAttr The requested accuracy for unary ops.

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.count_leading_zeros (mhlo::ClzOp)

Clz operation

構文:

operation ::= `mhlo.count_leading_zeros` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise count of the number of leading zero bits in the operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#count_leading_zeros

例:

%result = mhlo.count_leading_zeros %operand : tensor<2x2xi8>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
operand ranked tensor of 2/4/8/16/32/64-bit integer values

結果:

結果説明
result ranked tensor of 2/4/8/16/32/64-bit integer values

mhlo.create_token (mhlo::CreateTokenOp)

CreateToken operation

構文:

operation ::= `mhlo.create_token` attr-dict `:` type(results)

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3

Informally, this operation does the same thing as AfterAllOp with 0 inputs: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all

例:

%output = mhlo.create_token : !mhlo.token

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

結果:

結果説明
outputトークン

mhlo.cross-replica-sum (mhlo::CrossReplicaSumOp)

CrossReplicaSum operation

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3

Informally, this operation does the same thing as AllReduceOp with channel_id = 0 , use_global_device_ids = false and computation implementing addition: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce

例:

%result = "mhlo.cross-replica-sum"(%operand) {
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<4xf32>) -> tensor<4xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
replica_groups ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.custom_call (mhlo::CustomCallOp)

CustomCall operation

構文:

operation ::= `mhlo.custom_call` custom<CustomCallTarget>($call_target_name) `(` $inputs `)`
              attr-dict `:` functional-type(operands, results)

Encapsulates an implementation-defined operation call_target_name that takes inputs and called_computations and produces results .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#custom_call

例:

%results = "mhlo.custom_call"(%input0) {
  call_target_name = "foo",
  has_side_effect = false,
  backend_config = "bar",
  api_version = 1 : i32,
  called_computations = [@foo]
} : (tensor<f32>) -> tensor<f32>

A custom call invokes code external to XLA. The `inputs` are passed to the
external code, and the external code is expected to produce a result of the
given type. The exact mechanism is backend-specific. For example, in the CPU
backend, a call instruction is emitted which targets a symbol with the name
`call_target_name`.

If XLA runtime is enabled for a backend, then custom calls use the runtime
custom call calling convention to call into the external functions. This
calling convention defines an ABI for encoding arguments, attributes and
results.

Depending on the API version there are two ways to pass extra bits of static
information to the external function:

1. For `API_VERSION_TYPED_FFI` custom calls `backend_config` must be a
   dictionary attribute, that will be encoded according to the custom call
   calling convention and passed to the external function as the attributes
   argument. External code is expected to use declarative bindings (see
   `xla/runtime/custom_call.h`) to decode them at run time. These custom
   calls are only supported if XLA uses XLA runtime.

2. For previous API versions it is the user responsibility to encode extra
   bits of static information as a string `backend_config` attribute, and
   decode it at run time.

Interfaces: MemoryEffectOpInterface

Attributes:

属性MLIR Type説明
call_target_name ::mlir::StringAttr string attribute
has_side_effect ::mlir::BoolAttr bool attribute
backend_config ::mlir::Attribute string attribute or dictionary of named attribute values
api_version ::mlir::mhlo::CustomCallApiVersionAttr Custom call API version
called_computations ::mlir::ArrayAttr flat symbol ref array attribute
custom_call_schedule ::mlir::mhlo::CustomCallScheduleAttr Specifies the desired schedule for the custom-call.
operand_layouts ::mlir::ArrayAttr Array of layout (1D tensor of index type) attributes
result_layouts ::mlir::ArrayAttr Array of layout (1D tensor of index type) attributes
output_operand_aliases ::mlir::ArrayAttr Aliasing attribute for outputs and operands of CustomCall

Operands:

オペランド説明
inputs variadic of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token or nested tuple with any combination of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token values

結果:

結果説明
«unnamed» variadic of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token or nested tuple with any combination of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token values

mhlo.divide (mhlo::DivOp)

Div operation

構文:

operation ::= `mhlo.divide` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise division of dividend lhs and divisor rhs tensors and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#divide

例:

%result = mhlo.divide %lhs, %rhs : tensor<4xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
lhs ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
result ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.domain (mhlo::DomainOp)

Domain operation

This operation is private to the XLA compiler, so it is does not yet have a specification.

Informally, these operations are used to group instructions with the same DomainMetadata property. ShardingMetadata is the main use case today to group instructions on the same device. Domain instructions provide two major benefits:

  • Prevent unintentionally optimizing instructions across domains.
  • Automatically assign the metadata of the instructions created in the domain. Without domain instructions, each HLO optimization pass would have to check and propagate the metadata, which would be easy to miss and also adds complexity to the compiler. Since domain instructions connect two different domains, each domain instruction is associated with two DomainMetadata -- one on the operand side and one on the user side of the domain.

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
kind ::mlir::mhlo::DomainKindAttr Kind of domain metatdata attached to an HLO domain.
entry_metadata ::mlir::StringAttr string attribute
exit_metadata ::mlir::StringAttr string attribute

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token

mhlo.dot (mhlo::DotOp)

Dot operation

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3

Informally, this operation does the same thing as XLA's Dot: https://www.tensorflow.org/xla/operation_semantics#dot

例:

%0 = mhlo.dot %arg0, %arg1 : (tensor<1x2xi32>, tensor<2x1xi32>) -> tensor<1x1xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
precision_config ::mlir::ArrayAttr Precision Config attribute

Operands:

オペランド説明
lhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.dot_general (mhlo::DotGeneralOp)

DotGeneral operation

Computes dot products between slices of lhs and slices of rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dot_general

例:

%result = "mhlo.dot_general"(%lhs, %rhs) {
  dot_dimension_numbers = #mhlo.dot<
    lhs_batching_dimensions = [0],
    rhs_batching_dimensions = [0],
    lhs_contracting_dimensions = [2],
    rhs_contracting_dimensions = [1]
  >,
  precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<2x2x2xi32>, tensor<2x2x2xi32>) -> tensor<2x2x2xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
dot_dimension_numbers ::mlir::mhlo::DotDimensionNumbersAttr Attribute that models the dimension information for dot.
precision_config ::mlir::ArrayAttr Precision Config attribute
algorithm ::mlir::mhlo::DotAlgorithmAttr Attribute that models the algorithm constraints to use for computing dot.

Operands:

オペランド説明
lhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.dynamic_broadcast_in_dim (mhlo::DynamicBroadcastInDimOp)

DynamicBroadcastInDim operation

This operation is functionally identical to broadcast_in_dim op, but the result shape is specified dynamically via output_dimensions .

It also accepts optional attributes to express static knowledge about the expanding behavior of dimensions. If not specified, all dimensions are assumed to be possibly expanding. The sets of dimensions that are known to be expanding and the set of dimensions that are known to be non-expanding must be disjoint and they must be a subset of the operand's dimensions.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_broadcast_in_dim

例:

%operand = mhlo.constant dense<[[1, 2, 3]]> : tensor<1x3xi64>
%output_dimensions = mhlo.constant dense<[2, 3, 2]> : tensor<3xi64>
%result = "mhlo.dynamic_broadcast_in_dim"(%operand, %output_dimensions) {
  broadcast_dimensions = array<i64: 2, 1>,
  known_expanding_dimensions = array<i64: 0>,
  known_nonexpanding_dimensions = array<i64: 1>
} : (tensor<1x3xi64>, tensor<3xi64>) -> tensor<2x3x2xi64>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
broadcast_dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
known_expanding_dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
known_nonexpanding_dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
output_dimensions 1D tensor of index or 2/4/8/16/32/64-bit integer values

結果:

結果説明
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.dynamic_conv (mhlo::DynamicConvOp)

DynamicConv operation

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8

Informally, this operation does the same thing as ConvolutionOp except that padding is specified dynamically via d_padding : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution

例:

%result = "mhlo.dynamic_conv"(%lhs, %rhs, %d_padding) {
  window_strides = dense<4> : tensor<2xi64>,
  lhs_dilation = dense<2> : tensor<2xi64>,
  rhs_dilation = dense<1> : tensor<2xi64>,
  window_reversal = dense<false> : tensor<2xi1>,
  dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
  feature_group_count = 1 : i64,
  batch_group_count = 1 : i64,
  precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>, tensor<2x2xi64>) -> tensor<1x2x2x1xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
window_strides ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
padding ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
lhs_dilation ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
rhs_dilation ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
window_reversal ::mlir::DenseElementsAttr constant boolean vector/tensor attribute
dimension_numbers ::mlir::mhlo::ConvDimensionNumbersAttr Structure of dimension information for conv op
feature_group_count ::mlir::IntegerAttr 64-bit signless integer attribute whose value is positive
batch_group_count ::mlir::IntegerAttr 64-bit signless integer attribute whose value is positive
precision_config ::mlir::ArrayAttr Precision Config attribute

Operands:

オペランド説明
lhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
d_padding ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.dynamic_gather (mhlo::DynamicGatherOp)

DynamicGather operation

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8

Informally, this operation does the same thing as GatherOp except that slice_sizes are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather

例:

%result = "mhlo.dynamic_gather"(%operand, %start_indices, %slice_sizes) {
  dimension_numbers = #mhlo.gather<
    offset_dims = [2, 3],
    collapsed_slice_dims = [0],
    start_index_map = [0, 2],
    index_vector_dim = 2>,
  indices_are_sorted = false
} : (tensor<3x4x2xi32>, tensor<2x3x2xi64>, tensor<3xi64>) -> tensor<2x3x2x2xi32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
dimension_numbers ::mlir::mhlo::GatherDimensionNumbersAttr Attribute that models the dimension information for gather
indices_are_sorted ::mlir::BoolAttr bool attribute

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
start_indices ranked tensor of 2/4/8/16/32/64-bit integer values
slice_sizes statically shaped 1-dimensional integer tensor of 2/4/8/16/32/64-bit integer values

結果:

結果説明
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.dynamic_iota (mhlo::DynamicIotaOp)

DynamicIota operation

This operation is functionally identical to iota op, but the result shape is specified dynamically via output_shape .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_iota

例:

%0 = mhlo.dynamic_iota %arg0, dim = 0 : (tensor<1xindex>) -> tensor<4xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
iota_dimension ::mlir::IntegerAttr 64-bit signless integer attribute whose value is non-negative

Operands:

オペランド説明
output_shape 1D tensor of index or 2/4/8/16/32/64-bit integer values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.dynamic_pad (mhlo::DynamicPadOp)

DynamicPad operation

構文:

operation ::= `mhlo.dynamic_pad` operands attr-dict `:` functional-type(operands, results)

Dynamically Pads the operand , with amount of padding added at low-end/high-end/interior is passed through input tensors.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
padding_value ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
edge_padding_low 1D tensor of index or 2/4/8/16/32/64-bit integer values
edge_padding_high 1D tensor of index or 2/4/8/16/32/64-bit integer values
interior_padding 1D tensor of index or 2/4/8/16/32/64-bit integer values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.dynamic_reshape (mhlo::DynamicReshapeOp)

DynamicReshape operation

構文:

operation ::= `mhlo.dynamic_reshape` operands attr-dict `:` functional-type(operands, results)

This operation is functionally identical to reshape op, but the result shape is specified dynamically via output_shape .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_reshape

例:

%output_shape = mhlo.constant dense<[3, 2]> : tensor<2xi64>
%result = mhlo.dynamic_reshape %operand, %output_shape : (tensor<2x3xi64>, tensor<2xi64>) -> tensor<3x2xi64>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
operand tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
output_shape 1D tensor of index or 2/4/8/16/32/64-bit integer values

結果:

結果説明
result tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.dynamic_slice (mhlo::DynamicSliceOp)

DynamicSlice operation

Extracts a slice from the operand using dynamically-computed starting indices and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_slice

例:

%result = mhlo.dynamic_slice %operand, %start_indices0, %start_indices1, sizes = [2, 2]
  : (tensor<4x4xi32>, tensor<i64>, tensor<i64>) -> tensor<2x2xi32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
slice_sizes ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
start_indices variadic of 0D tensor of 2/4/8/16/32/64-bit integer values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.dynamic_update_slice (mhlo::DynamicUpdateSliceOp)

DynamicUpdateSlice operation

構文:

operation ::= `mhlo.dynamic_update_slice` operands attr-dict `:` functional-type(operands, results)

Produces a result tensor which is equal to the operand tensor except that the slice starting at start_indices is updated with the values in update .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_update_slice

例:

%result = mhlo.dynamic_update_slice %operand, %update, %start_indices0, %start_indices1
  : (tensor<4x4xi32>, tensor<2x2xi32>, tensor<i64>, tensor<i64>) -> tensor<4x4xi32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
update ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
start_indices variadic of 0D tensor of 2/4/8/16/32/64-bit integer values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.einsum (mhlo::EinsumOp)

Einsum operation

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3

Informally, this operation does the same thing as TF's einsum: https://www.tensorflow.org/api_docs/python/tf/einsum

例:

%result = "mhlo.einsum"(%lhs, %rhs) {
  einsum_config = "ab,bc->ac"
} : (tensor<4x16xf32>, tensor<16x4xf32>) -> tensor<4x4xf32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
einsum_config ::mlir::StringAttr string attribute

Operands:

オペランド説明
lhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.erf (mhlo::ErfOp)

Erf operation

構文:

operation ::= `mhlo.erf` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise erf operation on operand tensor and produces a result tensor.

例:

%result = mhlo.erf %operand : tensor<2x2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float values

mhlo.exponential (mhlo::ExpOp)

Exp operation

構文:

operation ::= `mhlo.exponential` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise exponential operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential

例:

%result = mhlo.exponential %operand : tensor<2x2xf64>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
result_accuracy ::mlir::mhlo::ResultAccuracyAttr The requested accuracy for unary ops.

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.exponential_minus_one (mhlo::Expm1Op)

Expm1 operation

構文:

operation ::= `mhlo.exponential_minus_one` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise exponential minus one operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential_minus_one

例:

%result = mhlo.exponential_minus_one %operand : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
result_accuracy ::mlir::mhlo::ResultAccuracyAttr The requested accuracy for unary ops.

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.fft (mhlo::FftOp)

Fft operation

Performs the forward and inverse Fourier transforms for real and complex inputs/outputs.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#fft

例:

%result = mhlo.fft %operand, type = FFT, length = [4] : (tensor<4xcomplex<f32>>) -> tensor<4xcomplex<f32>>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
fft_type ::mlir::mhlo::FftTypeAttr XLA fast fourier transform type.
fft_length ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.floor (mhlo::FloorOp)

Floor operation

構文:

operation ::= `mhlo.floor` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise floor of operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#floor

例:

%result = mhlo.floor %operand : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or per-tensor integer quantized values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or per-tensor integer quantized values

mhlo.fusion (mhlo::FusionOp)

Fusion operation

This operation is private to the XLA compiler, so it is does not yet have a specification.

Informally, this operation consists of a group of basic ops (represented as a region attached to it). It serves as a hint to the backend that it is beneficial to emit the contained ops into a single loop nest or kernel.

Attributes:

属性MLIR Type説明
fusion_kind ::mlir::mhlo::FusionKindAttr fusion kind
output_operand_aliases ::mlir::ArrayAttr Aliasing attribute for outputs and operands of Fusion

Operands:

オペランド説明
inputs variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token

結果:

結果説明
results variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values

mhlo.gather (mhlo::GatherOp)

Gather operation

Gathers slices from operand tensor from offsets specified in start_indices and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather

例:

%result = "mhlo.gather"(%operand, %start_indices) {
  dimension_numbers = #stablehlo.gather<
    offset_dims = [3, 4],
    collapsed_slice_dims = [1],
    operand_batching_dims = [0],
    start_indices_batching_dims = [1],
    start_index_map = [2, 1],
    index_vector_dim = 3>,
  slice_sizes = dense<[0, 2, 2]> : tensor<3xi64>,
  indices_are_sorted = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>) -> tensor<2x2x3x2x2xi64>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
dimension_numbers ::mlir::mhlo::GatherDimensionNumbersAttr Attribute that models the dimension information for gather
slice_sizes ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
indices_are_sorted ::mlir::BoolAttr bool attribute

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
start_indices ranked tensor of 2/4/8/16/32/64-bit integer values

結果:

結果説明
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.get_dimension_size (mhlo::GetDimensionSizeOp)

GetDimensionSize operation

Produces the size of the given dimension of the operand .

See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_dimension_size

例:

%result = mhlo.get_dimension_size %operand, dim = 1 : (tensor<2x3xf32>) -> tensor<i32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
dimension ::mlir::IntegerAttr 64-bit signless integer attribute whose value is non-negative

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
«unnamed» tensor of 32-bit signless integer values

mhlo.get_tuple_element (mhlo::GetTupleElementOp)

GetTupleElement operation

構文:

operation ::= `mhlo.get_tuple_element` $operand `[` $index `]` attr-dict `:` functional-type(operands, results)

Extracts element at index position of the operand tuple and produces a result .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_tuple_element

例:

%result = mhlo.get_tuple_element %operand[0] : (tuple<tensor<2xf32>, tuple<tensor<i32>>>) -> tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
index ::mlir::IntegerAttr 32-bit signless integer attribute whose value is non-negative

Operands:

オペランド説明
operand nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values

結果:

結果説明
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.if (mhlo::IfOp)

If operation

Produces the output from executing exactly one branch from true_branch or false_branch depending on the value of pred .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#if

Example: %result = "mhlo.if"(%pred) ({ "mhlo.return"(%result_true_branch) : (tensor ) -> () }, { "mhlo.return"(%result_false_branch) : (tensor ) -> () }) : (tensor ) -> tensor

Traits: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferTypeOpInterface

Operands:

オペランド説明
pred ranked tensor of bool values

結果:

結果説明
«unnamed» variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token

mhlo.imag (mhlo::ImagOp)

Imag operation

構文:

operation ::= `mhlo.imag` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Extracts the imaginary part, element-wise, from the operand and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#imag

例:

%result = mhlo.imag %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float values

mhlo.infeed (mhlo::InfeedOp)

Infeed operation

Reads data from the infeed and produces results .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#infeed

例:

%results:2 = "mhlo.infeed"(%token) {
  infeed_config = ""
} : (!mhlo.token) -> (tensor<3x3x3xi32>, !mhlo.token)

Attributes:

属性MLIR Type説明
infeed_config ::mlir::StringAttr string attribute
layout ::mlir::ArrayAttr array attribute

Operands:

オペランド説明
tokenトークン

結果:

結果説明
«unnamed» variadic of statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token

mhlo.iota (mhlo::IotaOp)

Iota operation

Fills an output tensor with values in increasing order starting from zero along the iota_dimension dimension.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#iota

例:

%output = mhlo.iota dim = 0 : tensor<4x5xi32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
iota_dimension ::mlir::IntegerAttr 64-bit signless integer attribute whose value is non-negative

結果:

結果説明
output statically shaped tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values

mhlo.is_finite (mhlo::IsFiniteOp)

IsFinite operation

構文:

operation ::= `mhlo.is_finite` $x attr-dict `:` functional-type(operands, results)

Performs element-wise check whether the value in x is finite (ie is neither +Inf, -Inf, nor NaN) and produces a y tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#is_finite

例:

%y = mhlo.is_finite %x : (tensor<7xf32>) -> tensor<7xi1>

Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
x ranked tensor of 4/6/8/16/32/64-bit float values

結果:

結果説明
y ranked tensor of bool values

mhlo.log (mhlo::LogOp)

Log operation

構文:

operation ::= `mhlo.log` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise logarithm operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log

例:

%result = mhlo.log %operand : tensor<2x2xf64>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
result_accuracy ::mlir::mhlo::ResultAccuracyAttr The requested accuracy for unary ops.

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.log_plus_one (mhlo::Log1pOp)

Log1p operation

構文:

operation ::= `mhlo.log_plus_one` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise logarithm plus one operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log_plus_one

例:

%result = mhlo.log_plus_one %operand : tensor<6xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
result_accuracy ::mlir::mhlo::ResultAccuracyAttr The requested accuracy for unary ops.

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.logistic (mhlo::LogisticOp)

Logistic operation

構文:

operation ::= `mhlo.logistic` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise logistic operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#logistic

例:

%result = mhlo.logistic %operand : tensor<2x2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
result_accuracy ::mlir::mhlo::ResultAccuracyAttr The requested accuracy for unary ops.

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.map (mhlo::MapOp)

Map operation

Applies a map function computation to inputs along the dimensions and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#map

例:

%result = "mhlo.map"(%input0, %input1) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = mhlo.multiply %arg0, %arg1 : tensor<i32>
    mhlo.return %0 : tensor<i32>
}) {
  dimensions = dense<[0, 1]> : tensor<2xi64>
} : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32>

Traits: InferTensorType , RecursiveMemoryEffects , SameOperandsAndResultShape , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Attributes:

属性MLIR Type説明
dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

オペランド説明
inputs variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.maximum (mhlo::MaxOp)

Max operation

構文:

operation ::= `mhlo.maximum` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise max operation on tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#maximum

例:

%result = mhlo.maximum %lhs, %rhs : tensor<4xf32>

Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
lhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.minimum (mhlo::MinOp)

Min operation

構文:

operation ::= `mhlo.minimum` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise min operation on tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#minimum

例:

%result = mhlo.minimum %lhs, %rhs : tensor<4xf32>

Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
lhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.minimum_broadcast_shapes (mhlo::MinimumBroadcastShapesOp)

Minimizes the rank of two or more shapes to be broadcasted

構文:

operation ::= `mhlo.minimum_broadcast_shapes` $shapes attr-dict `:` type($shapes) `->` type($results)

Given two or more 1D tensors representing shapes, returns one 1D tensor for each operand, where operand i corresponds to output i .

The returned tensors have the property that they specify a shape which is a reshape of the corresponding input shape, and the broadcasted output shape (using shape::BroadcastOp) of the returned shapes is a reshape of the broadcasted output shape of the input shapes. Among all possibilities with this property, the one is chosen which minimizes the rank of each returned shape.

The general idea of this op is that it can be used for ops which have a broadcasting semantic to operate on shapes with a possibly smaller rank while preserving equivalence of the computed values. After computing the result of the op using reshaped operands, the result can be reshaped to the result that would have been originally computed.

Here is an example with two input shapes:

mhlo.minimum_broadcast_shapes [1, 2, 3, 1, 2, 1],
                                 [1, 1, 1, 2, 3] -> [6, 2, 1], [2, 3]

The broadcasted output shape of the operands is [1, 2, 3, 1, 2, 3], the broadcasted output shape of the outputs is [6, 2, 3]. These two shapes are reshapes of each other, and also each output is a reshape of the corresponding input.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
shapes variadic of 1D tensor of index values

結果:

結果説明
results variadic of 1D tensor of index values

mhlo.multiply (mhlo::MulOp)

Mul operation

構文:

operation ::= `mhlo.multiply` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise product of two tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#multiply

例:

%result = mhlo.multiply %lhs, %rhs : tensor<2xi32>

Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
lhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.negate (mhlo::NegOp)

Neg operation

構文:

operation ::= `mhlo.negate` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise negation of operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#negate

例:

%result = mhlo.negate %operand : tensor<2x3xi32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
operand ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
result ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.not (mhlo::NotOp)

Not operation

構文:

operation ::= `mhlo.not` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise NOT of tensor operand of type integer and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#not

例:

%result = mhlo.not %operand : tensor<5x3x1xi1>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
operand ranked tensor of bool or 2/4/8/16/32/64-bit integer values

結果:

結果説明
result ranked tensor of bool or 2/4/8/16/32/64-bit integer values

mhlo.optimization_barrier (mhlo::OptimizationBarrierOp)

OptimizationBarrier operation

構文:

operation ::= `mhlo.optimization_barrier` attr-dict ($operand^ `:` custom<PairwiseOpType>(type($operand), type($result))):(`(` `)`)?

Ensures that the operations that produce the operand are executed before any operations that depend on the result and prevents compiler transformations from moving operations across the barrier. Other than that, the operation is an identity, ie result = operand .

See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#optimization_barrier

例:

%result0, %result1 = mhlo.optimization_barrier %operand0, %operand1 : tensor<f32>, tensor<f32>

Traits: AlwaysSpeculatableImplTrait , HLO_PairwiseSameOperandAndResultType

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
operand variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token

結果:

結果説明
result variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token

mhlo.or (mhlo::OrOp)

Or operation

構文:

operation ::= `mhlo.or` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise OR of two tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#or

例:

%result = mhlo.or %lhs, %rhs : tensor<2xi1>

Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
lhs ranked tensor of bool or 2/4/8/16/32/64-bit integer values
rhs ranked tensor of bool or 2/4/8/16/32/64-bit integer values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.outfeed (mhlo::OutfeedOp)

Outfeed operation

Writes inputs to the outfeed and produces a result token.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#outfeed

例:

%result = "mhlo.outfeed"(%input0, %token) {
  outfeed_config = ""
} : (tensor<3x3x3xi32>, !mhlo.token) -> !mhlo.token

Interfaces: InferTypeOpInterface

Attributes:

属性MLIR Type説明
outfeed_config ::mlir::StringAttr string attribute

Operands:

オペランド説明
inputs variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
tokenトークン

結果:

結果説明
«unnamed»トークン

mhlo.pad (mhlo::PadOp)

Pad operation

Expands operand by padding around the tensor as well as between the elements of the tensor with the given padding_value .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#pad

例:

%0 = mhlo.pad %arg0, %arg1, low = [0, 1], high = [2, 1], interior = [1, 2]
  : (tensor<2x3xi32>, tensor<i32>) -> tensor<5x9xi32>

Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
edge_padding_low ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
edge_padding_high ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
interior_padding ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
padding_value ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.partition_id (mhlo::PartitionIdOp)

PartitionId operation

構文:

operation ::= `mhlo.partition_id` attr-dict `:` type(results)

Produces partition_id of the current process.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#partition_id

例:

%result = mhlo.partition_id : tensor<ui32>

Interfaces: InferTypeOpInterface

結果:

結果説明
«unnamed» ranked tensor of 32-bit unsigned integer values

mhlo.popcnt (mhlo::PopulationCountOp)

PopulationCount operation

構文:

operation ::= `mhlo.popcnt` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise count of the number of bits set in the operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#popcnt

例:

%result = mhlo.popcnt %operand : tensor<4xi8>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
operand ranked tensor of 2/4/8/16/32/64-bit integer values

結果:

結果説明
result ranked tensor of 2/4/8/16/32/64-bit integer values

mhlo.power (mhlo::PowOp)

Pow operation

構文:

operation ::= `mhlo.power` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise exponentiation of lhs tensor by rhs tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#power

例:

%result = mhlo.power %lhs, %rhs : tensor<6xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
lhs ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
result ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.ragged_dot (mhlo::RaggedDotOp)

Ragged matrix multiplication over a single ragged dimension

This operation takes three tensor args---lhs, rhs, and group_sizes---and a "ragged_dot_dimension_numbers" attribute. Like dot_general, the lhs and rhs are allowed arbitrary batch and contracting dimensions. Additionally, the lhs is required to have one ragged dimension, and the rhs may have at most one group dimension. The op has three modes, depending on the kind of the lhs ragged dimension.

In mode 1, the shape-signature is [b,m,k], [g,b,k,n], [b,g] -> [b,m,n] . Here the ragged dimension is an lhs non-contracting dimension ( m ). The dimensions b and k represent batch and contracting dimensions respectively. The rhs is required to have a group dimension ( g ).

In mode 2, the shape-signature is [b,m,k], [b,k,n], [b,g] -> [g,b,m,n] . Here the ragged dimension is an lhs/rhs contracting dimension ( k ).

In mode 3, the shape-signature is [b,m,k], [b,k,n], [g] -> [b,m,n] . Here the ragged dimension is an lhs/rhs batch dimension ( b ).

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
ragged_dot_dimension_numbers ::mlir::mhlo::RaggedDotDimensionNumbersAttr Attribute that models the dimension information for ragged dot.
precision_config ::mlir::ArrayAttr Precision Config attribute

Operands:

オペランド説明
lhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
group_sizes ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.real (mhlo::RealOp)

Real operation

構文:

operation ::= `mhlo.real` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Extracts the real part, element-wise, from the operand and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#real

例:

%result = mhlo.real %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float values

mhlo.real_dynamic_slice (mhlo::RealDynamicSliceOp)

RealDynamicSlice operation

構文:

operation ::= `mhlo.real_dynamic_slice` operands attr-dict `:` functional-type(operands, results)

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8

Informally, this operation does the same thing as SliceOp except that start_indices , limit_indices and strides are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice

例:

%result = mhlo.real_dynamic_slice %operand,
            %start_indices, %limit_indices, %strides
       : (tensor<256x?xf32>, tensor<2xindex>, tensor<2xindex>, tensor<2xindex>) -> tensor<256x?xf32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
start_indices 1D tensor of index or 2/4/8/16/32/64-bit integer values
limit_indices 1D tensor of index or 2/4/8/16/32/64-bit integer values
strides 1D tensor of index or 2/4/8/16/32/64-bit integer values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.recv (mhlo::RecvOp)

Recv operation

Receives data from a channel with channel_id and produces results .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#recv

例:

%results:2 = "mhlo.recv"(%token) {
  // channel_id = 5 : i64,
  // channel_type = #stablehlo<channel_type DEVICE_TO_DEVICE>,
  channel_handle = #mhlo.channel_handle<handle = 5, type = 1>,
  is_host_transfer = false,
  source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>
} : (!mhlo.token) -> (tensor<3x4xi32>, !mhlo.token)

Attributes:

属性MLIR Type説明
channel_handle ::mlir::mhlo::ChannelHandleAttr two 64-bit integers 'handle' and 'type'
is_host_transfer ::mlir::BoolAttr bool attribute
source_target_pairs ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

オペランド説明
tokenトークン

結果:

結果説明
«unnamed» variadic of statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token

mhlo.reduce (mhlo::ReduceOp)

Reduce operation

Applies a reduction function body to inputs and init_values along the dimensions and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce

例:

%result = "mhlo.reduce"(%input, %init_value) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
    "mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
  dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>

Traits: InferTensorType , RecursiveMemoryEffects , SameVariadicOperandSize , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Attributes:

属性MLIR Type説明
dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

オペランド説明
inputs variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
init_values variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
«unnamed» variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.reduce_precision (mhlo::ReducePrecisionOp)

ReducePrecision operation

構文:

operation ::= `mhlo.reduce_precision` $operand `,` `format` `=` custom<ExponentMantissa>($exponent_bits, $mantissa_bits)
              attr-dict `:` custom<SameOperandsAndResultType>(type($operand), type($output))

Performs element-wise conversion of operand to another floating-point type that uses exponent_bits and mantissa_bits and back to the original floating-point type and produces an output tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_precision

例:

%output = mhlo.reduce_precision %operand, format = e5m2 : tensor<6xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
exponent_bits ::mlir::IntegerAttr 32-bit signless integer attribute whose value is positive
mantissa_bits ::mlir::IntegerAttr 32-bit signless integer attribute whose value is non-negative

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float values

結果:

結果説明
output ranked tensor of 4/6/8/16/32/64-bit float values

mhlo.reduce_scatter (mhlo::ReduceScatterOp)

ReduceScatter operation

Within each process group in the process grid, performs reduction, using computations , over the values of the operand tensor from each process, splits the reduction result along scatter_dimension into parts, and scatters the split parts between the processes to produce the result .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_scatter

例:

%result = "mhlo.reduce_scatter"(%operand) ({
  ^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
  %0 = mhlo.add %arg0, %arg1 : tensor<f32>
  mhlo.return %0 : tensor<f32>
}) {
  scatter_dimension = 1 : i64,
  replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
  // channel_id = 0
  channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
  // use_global_device_ids = false
} : (tensor<2x4xf32>) -> tensor<2x2xf32>

Attributes:

属性MLIR Type説明
scatter_dimension ::mlir::IntegerAttr 64-bit signless integer attribute whose value is non-negative
replica_groups ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
channel_handle ::mlir::mhlo::ChannelHandleAttr two 64-bit integers 'handle' and 'type'
use_global_device_ids ::mlir::UnitAttr unit attribute

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.reduce_window (mhlo::ReduceWindowOp)

ReduceWindow operation

Applies a reduction function body to windows of inputs and init_values and produces results .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_window

例:

%result = "mhlo.reduce_window"(%input, %init_value) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = mhlo.add %arg0, %arg1 : tensor<i32>
    mhlo.return %0 : tensor<i32>
}) {
  window_dimensions = dense<[2, 1]> : tensor<2xi64>,
  window_strides = dense<[4, 1]> : tensor<2xi64>,
  base_dilations = dense<[2, 1]> : tensor<2xi64>,
  window_dilations = dense<[3, 1]> : tensor<2xi64>,
  padding = dense<[[2, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<3x2xi32>, tensor<i32>) -> tensor<2x2xi32>

Traits: InferTensorType , RecursiveMemoryEffects , SameVariadicOperandSize , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Attributes:

属性MLIR Type説明
window_dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
window_strides ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
base_dilations ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
window_dilations ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
padding ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

オペランド説明
inputs variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
init_values variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
«unnamed» variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.remainder (mhlo::RemOp)

Rem operation

構文:

operation ::= `mhlo.remainder` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise remainder of dividend lhs and divisor rhs tensors and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#remainder

例:

%result = mhlo.remainder %lhs, %rhs : tensor<4xi64>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
lhs ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
result ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.replica_id (mhlo::ReplicaIdOp)

ReplicaId operation

構文:

operation ::= `mhlo.replica_id` attr-dict `:` type(results)

Produces replica_id of the current process.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#replica_id

例:

%result = mhlo.replica_id : tensor<ui32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

結果:

結果説明
«unnamed» ranked tensor of 32-bit unsigned integer values

mhlo.reshape (mhlo::ReshapeOp)

Reshape operation

構文:

operation ::= `mhlo.reshape` operands attr-dict `:` functional-type(operands, results)

Performs reshape of operand tensor to a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reshape

例:

%result = mhlo.reshape %operand : (tensor<2xf32>) -> tensor<1x2xf32>

Traits: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
operand tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
«unnamed» statically shaped or single bounded dimension tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.return (mhlo::ReturnOp)

_This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/425

Informally, this operation serves as a terminator for regions defined by
the StableHLO ops. Non-StableHLO ops, e.g. `func.func`, have their own
terminators, e.g. `func.return`.

Example:

    ```mlir
    %result = "mhlo.reduce"(%input, %init_value) ({
      ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
        %0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
        "mhlo.return"(%0) : (tensor<i32>) -> ()
    }) {
      dimensions = dense<1> : tensor<1xi64>
    } : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
    ```_

Syntax:

```

operation ::= mhlo.return $results attr-dict ( : type($results)^)?


Traits: `AlwaysSpeculatableImplTrait`, `Terminator`

Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`

Effects: `MemoryEffects::Effect{}`

#### Operands:

| Operand | Description |
| :-----: | ----------- |
| `results` | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |



### `mhlo.reverse` (mhlo::ReverseOp)

_Reverse operation_

Reverses the order of elements in the `operand` along the specified
`dimensions` and produces a `result` tensor.

See:
<a href="https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse">https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse</a>

Example:
```mlir
%result = mhlo.reverse %operand, dims = [1] : tensor<3x2xi32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.rng (mhlo::RngOp)

Rng operation

Generates random numbers using the rng_distribution algorithm and produces a result tensor of a given shape shape .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng

例:

%result = mhlo.rng %a, %b, %shape, distribution = NORMAL : (tensor<i32>, tensor<i32>, tensor<2xi64>) -> tensor<3x3xi32>

Traits: InferTensorType

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Attributes:

属性MLIR Type説明
rng_distribution ::mlir::mhlo::RngDistributionAttr XLA PRNG distribution to be used.

Operands:

オペランド説明
a 0D tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values
b 0D tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values
shape 1D tensor of index or 2/4/8/16/32/64-bit integer values

結果:

結果説明
result ranked tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values

mhlo.rng_bit_generator (mhlo::RngBitGeneratorOp)

RngBitGenerator operation

Returns an output filled with uniform random data and an updated output state output_state given an initial state initial_state using the pseudorandom number generator algorithm rng_algorithm .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng_bit_generator

例:

%output_state, %output = mhlo.rng_bit_generator %initial_state, algorithm = THREE_FRY : (tensor<2xui64>) -> (tensor<2xui64>, tensor<2x2xui64>)

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
rng_algorithm ::mlir::mhlo::RngAlgorithmAttr XLA PRNG algorithm to be used.

Operands:

オペランド説明
initial_state ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values

結果:

結果説明
output_state ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values
output statically shaped tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values

mhlo.round_nearest_afz (mhlo::RoundOp)

Round operation

構文:

operation ::= `mhlo.round_nearest_afz` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise rounding towards the nearest integer, breaking ties away from zero, on the operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_afz

例:

%result = mhlo.round_nearest_afz %operand : tensor<5xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float values

mhlo.round_nearest_even (mhlo::RoundNearestEvenOp)

RoundNearestEven operation

構文:

operation ::= `mhlo.round_nearest_even` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise rounding towards the nearest integer, breaking ties towards the even integer, on the operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_even

例:

%result = mhlo.round_nearest_even %operand : tensor<5xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float values

mhlo.rsqrt (mhlo::RsqrtOp)

Rsqrt operation

構文:

operation ::= `mhlo.rsqrt` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise reciprocal square root operation on operand tensor and produces a result tensor, implementing the rSqrt operation from the IEEE-754 specification.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rsqrt

例:

%result = mhlo.rsqrt %operand : tensor<2x2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
result_accuracy ::mlir::mhlo::ResultAccuracyAttr The requested accuracy for unary ops.

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.scatter (mhlo::ScatterOp)

Scatter operation

Produces results tensors which are equal to inputs tensors except that several slices specified by scatter_indices are updated with the values updates using update_computation .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#scatter

例:

%result = "mhlo.scatter"(%input, %scatter_indices, %update) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = mhlo.add %arg0, %arg1 : tensor<i32>
    mhlo.return %0 : tensor<i32>
}) {
  scatter_dimension_numbers = #mhlo.scatter<
    update_window_dims = [3, 4],
    inserted_window_dims = [1],
    input_batching_dims = [0],
    scatter_indices_batching_dims = [1],
    scatter_dims_to_operand_dims = [2, 1],
    index_vector_dim = 3>,
  indices_are_sorted = false,
  unique_indices = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>, tensor<2x2x3x2x2xi64>) -> tensor<2x3x4x2xi64>

Traits: RecursiveMemoryEffects , SameVariadicOperandSize

Interfaces: InferTypeOpInterface

Attributes:

属性MLIR Type説明
scatter_dimension_numbers ::mlir::mhlo::ScatterDimensionNumbersAttr Attribute that models the dimension information for scatter
indices_are_sorted ::mlir::BoolAttr bool attribute
unique_indices ::mlir::BoolAttr bool attribute

Operands:

オペランド説明
inputs variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
scatter_indices ranked tensor of integer or index values
updates variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
«unnamed» variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.select (mhlo::SelectOp)

Select operation

構文:

operation ::= `mhlo.select` operands attr-dict `:`
              custom<SelectOpType>(type($pred), type($on_true), type($on_false), type($result))

Produces a result tensor where each element is selected from on_true or on_false tensor based on the value of the corresponding element of pred .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select

例:

%result = mhlo.select %pred, %on_true, %on_false : tensor<2x2xi1>, tensor<2x2xi32>

Traits: AlwaysSpeculatableImplTrait , HLO_BroadcastingElementwise , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
pred ranked tensor of bool values
on_true ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
on_false ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.select_and_scatter (mhlo::SelectAndScatterOp)

SelectAndScatter operation

Scatters the values from the source tensor using scatter based on the outcome of reduce_window of the input tensor using select and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select_and_scatter

例:

%result = "mhlo.select_and_scatter"(%operand, %source, %init_value) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = "mhlo.compare"(%arg0, %arg1) {
      comparison_direction = #stablehlo<comparison_direction GE>
    } : (tensor<i32>, tensor<i32>) -> tensor<i1>
    "mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
    "mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
  window_dimensions = dense<[3, 1]> : tensor<2xi64>,
  window_strides = dense<[2, 1]> : tensor<2xi64>,
  padding = dense<[[0, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<4x2xi32>, tensor<2x2xi32>, tensor<i32>) -> tensor<4x2xi32>

Traits: RecursiveMemoryEffects

Interfaces: InferTypeOpInterface

Attributes:

属性MLIR Type説明
window_dimensions ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
window_strides ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
padding ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
source ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
init_value ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.send (mhlo::SendOp)

Send operation

Sends inputs to a channel channel_id and produces a result token.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#send

例:

%result = "mhlo.send"(%operand, %token) {
  // channel_id = 5 : i64,
  // channel_type = #stablehlo<channel_type DEVICE_TO_DEVICE>,
  channel_handle = #mhlo.channel_handle<handle = 5, type = 1>,
  is_host_transfer = false,
  source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>
} : (tensor<3x4xi32>, !mhlo.token) -> !mhlo.token

Interfaces: InferTypeOpInterface

Attributes:

属性MLIR Type説明
channel_handle ::mlir::mhlo::ChannelHandleAttr two 64-bit integers 'handle' and 'type'
is_host_transfer ::mlir::BoolAttr bool attribute
source_target_pairs ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

オペランド説明
inputs variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
tokenトークン

結果:

結果説明
«unnamed»トークン

mhlo.set_dimension_size (mhlo::SetDimensionSizeOp)

SetDimensionSize operation

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8

Informally, this operation does the same thing as XLA's SetDimensionSize: https://www.tensorflow.org/xla/operation_semantics#setdimensionsize

例:

%0 = mhlo.set_dimension_size %arg0, %arg1, dim = 1 : (tensor<4x2xf32>, tensor<i32>) -> tensor<4x2xf32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
dimension ::mlir::IntegerAttr 64-bit signless integer attribute whose value is non-negative

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
size tensor of 32-bit signless integer values

結果:

結果説明
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.shift_left (mhlo::ShiftLeftOp)

ShiftLeft operation

構文:

operation ::= `mhlo.shift_left` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise left-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_left

例:

%result = mhlo.shift_left %lhs, %rhs : tensor<6xi8>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
lhs ranked tensor of 2/4/8/16/32/64-bit integer values
rhs ranked tensor of 2/4/8/16/32/64-bit integer values

結果:

結果説明
result ranked tensor of 2/4/8/16/32/64-bit integer values

mhlo.shift_right_arithmetic (mhlo::ShiftRightArithmeticOp)

ShiftRightArithmetic operation

構文:

operation ::= `mhlo.shift_right_arithmetic` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise arithmetic right-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_arithmetic

例:

%result = mhlo.shift_right_arithmetic %lhs, %rhs : tensor<6xi8>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
lhs ranked tensor of 2/4/8/16/32/64-bit integer values
rhs ranked tensor of 2/4/8/16/32/64-bit integer values

結果:

結果説明
result ranked tensor of 2/4/8/16/32/64-bit integer values

mhlo.shift_right_logical (mhlo::ShiftRightLogicalOp)

ShiftRightLogical operation

構文:

operation ::= `mhlo.shift_right_logical` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise logical right-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_logical

例:

%result = mhlo.shift_right_logical %lhs, %rhs : tensor<6xi8>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
lhs ranked tensor of 2/4/8/16/32/64-bit integer values
rhs ranked tensor of 2/4/8/16/32/64-bit integer values

結果:

結果説明
result ranked tensor of 2/4/8/16/32/64-bit integer values

mhlo.sign (mhlo::SignOp)

Sign operation

構文:

operation ::= `mhlo.sign` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Returns the sign of the operand element-wise and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sign

例:

%result = mhlo.sign %operand : tensor<7xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
operand ranked tensor of 2/4/8/16/32/64-bit signless integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

結果:

結果説明
result ranked tensor of 2/4/8/16/32/64-bit signless integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.sine (mhlo::SineOp)

Sine operation

構文:

operation ::= `mhlo.sine` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise sine operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sine

例:

%result = mhlo.sine %operand : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
result_accuracy ::mlir::mhlo::ResultAccuracyAttr The requested accuracy for unary ops.

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.sinh (mhlo::SinhOp)

Sinh operation

構文:

operation ::= `mhlo.sinh` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise sinh operation on operand tensor and produces a result tensor.

例:

%result = mhlo.sinh %operand : tensor<2x2xf32>

Traits: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Operands:

オペランド説明
operand tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values

結果:

結果説明
result tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values

mhlo.slice (mhlo::SliceOp)

Slice operation

Extracts a slice from the operand using statically-computed starting indices and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice

例:

%result = "mhlo.slice" (%operand) {
  start_indices = dense<[1, 2]> : tensor<2xi64>,
  limit_indices = dense<[3, 4]> : tensor<2xi64>,
  strides = dense<1> : tensor<2xi64>
} : (tensor<3x4xi64>) -> tensor<2x2xi64>

Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
start_indices ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
limit_indices ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute
strides ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.sort (mhlo::SortOp)

Sort operation

Sorts a variadic number of tensors in inputs together, according to a custom comparator , along the given dimension and produces a variadic number of tensors as results .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sort

例:

%result0, %result1 = "mhlo.sort"(%input0, %input1) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>, %arg2: tensor<i32>, %arg3: tensor<i32>):
    %predicate = "mhlo.compare"(%arg0, %arg1) {
      comparison_direction = #stablehlo<comparison_direction GT>
      } : (tensor<i32>, tensor<i32>) -> tensor<i1>
    "mhlo.return"(%predicate) : (tensor<i1>) -> ()
}) {
  dimension = 0 : i64,
  is_stable = true
} : (tensor<2x3xi32>, tensor<2x3xi32>) -> (tensor<2x3xi32>, tensor<2x3xi32>)

Traits: InferTensorType , RecursiveMemoryEffects , SameOperandsAndResultShape

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Attributes:

属性MLIR Type説明
dimension ::mlir::IntegerAttr 64-bit signless integer attribute
is_stable ::mlir::BoolAttr bool attribute

Operands:

オペランド説明
inputs variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
«unnamed» variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.sqrt (mhlo::SqrtOp)

Sqrt operation

構文:

operation ::= `mhlo.sqrt` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise square root operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sqrt

例:

%result = mhlo.sqrt %operand : tensor<2x2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
result_accuracy ::mlir::mhlo::ResultAccuracyAttr The requested accuracy for unary ops.

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.stochastic_convert (mhlo::StochasticConvertOp)

StochasticConvert operation

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/295

Informally, this operation performs element-wise conversion of values from a bigger type to a smaller one with stochastic rounding using the random number passed in.

Traits: AlwaysSpeculatableImplTrait , Elementwise

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float values
random ranked tensor of 2/4/8/16/32/64-bit unsigned integer values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.subtract (mhlo::SubtractOp)

Subtract operation

構文:

operation ::= `mhlo.subtract` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise subtraction of two tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#subtract

例:

%result = mhlo.subtract %lhs, %rhs : tensor<2xi32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
lhs ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
rhs ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
result ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.tan (mhlo::TanOp)

Tan operation

構文:

operation ::= `mhlo.tan` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/954

Informally, this operation returns Tan(operand) element-wise.

例:

%0 = mhlo.tan %arg0 : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
result_accuracy ::mlir::mhlo::ResultAccuracyAttr The requested accuracy for unary ops.

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.tanh (mhlo::TanhOp)

Tanh operation

構文:

operation ::= `mhlo.tanh` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise hyperbolic tangent operation on operand tensor and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tanh

例:

%result = mhlo.tanh %operand : tensor<2xf32>

Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
result_accuracy ::mlir::mhlo::ResultAccuracyAttr The requested accuracy for unary ops.

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.topk (mhlo::TopKOp)

TopK operation

構文:

operation ::= `mhlo.topk` `(`$operand `,` `k` `=` $k (`,` `largest` `=` $largest^)? `)` attr-dict `:`
              type($operand) `->` `(`type($values)`,` type($indices)`)`

Returns top k values and their indices, along the last dimension of the operand if largest=true or the bottom k values if largest=false .

See: https://www.tensorflow.org/xla/operation_semantics#top-k

例:

%values, %indices = mhlo.topk(%operand, k=5, largest=true)
  : tensor<100xf32> -> (tensor<5xf32>, tensor<5xi32>)

Traits: InferTensorType , RecursiveMemoryEffects

Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface

Attributes:

属性MLIR Type説明
k ::mlir::IntegerAttr 64-bit signless integer attribute
largest ::mlir::BoolAttr bool attribute

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
values ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
indices ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.torch_index_select (mhlo::TorchIndexSelectOp)

TorchIndexSelect operation

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3

Informally, this operation does the same thing as PyTorch's index_select, augmented with support for batch dimensions: https://pytorch.org/docs/stable/generated/torch.index_select.html

The batch_dims attribute specifies the number of major batch dimensions (0 or more) that act like a multidimensional loop over both the operand and the index.

例:

%result = "mhlo.torch_index_select"(%operand, %index) {
  dim = 2 : i64,
  batch_dims = 1 : i64
} : (tensor<8x128x3072x64xf32>, tensor<8x16x1024xi32>) -> tensor<8x128x16x1024x64xf32>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
dim ::mlir::IntegerAttr 64-bit signless integer attribute
batch_dims ::mlir::IntegerAttr 64-bit signless integer attribute

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values
index ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.trace (mhlo::TraceOp)

Trace operation

構文:

operation ::= `mhlo.trace` $operand `,` $tag attr-dict `:` type($operand)

This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/604

It is not used by JAX, PyTorch or TensorFlow, so it looks like we should've classified it as "Private to XLA" and not included it in StableHLO in the first place. With that in mind, its semantics will not be documented here.

例:

mhlo.trace %arg0, "In test code." : tensor<5x1x5xi32>

Attributes:

属性MLIR Type説明
tag ::mlir::StringAttr string attribute

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.transpose (mhlo::TransposeOp)

Transpose operation

Permutes the dimensions of operand tensor using permutation and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#transpose

例:

%0 = mhlo.transpose %arg0, dims = [2, 1, 0] : (tensor<1x2x3xi32>) -> tensor<3x2x1xi32>

Traits: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
permutation ::mlir::DenseIntElementsAttr 64-bit signless integer elements attribute

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

mhlo.triangular_solve (mhlo::TriangularSolveOp)

TriangularSolve operation

Solves batches of systems of linear equations with lower or upper triangular coefficient matrices.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#triangular_solve

例:

%result = "mhlo.triangular_solve"(%a, %b) {
  left_side = true,
  lower = true,
  unit_diagonal = false,
  transpose_a = #stablehlo<transpose NO_TRANSPOSE>
} : (tensor<3x3xf32>, tensor<3x3xf32>) -> tensor<3x3xf32>

Traits: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

属性MLIR Type説明
left_side ::mlir::BoolAttr bool attribute
lower ::mlir::BoolAttr bool attribute
unit_diagonal ::mlir::BoolAttr bool attribute
transpose_a ::mlir::mhlo::TransposeAttr Transpose options

Operands:

オペランド説明
a ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values
b ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values

結果:

結果説明
«unnamed» ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values

mhlo.tuple (mhlo::TupleOp)

Tuple operation

構文:

operation ::= `mhlo.tuple` $val attr-dict `:` custom<TupleOpType>(type($val), type($result))

Produces a result tuple from values val .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tuple

例:

%result = mhlo.tuple %val0, %val1 : tuple<tensor<2xf32>, tuple<tensor<i32>>>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
val variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values

結果:

結果説明
result nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values

mhlo.uniform_dequantize (mhlo::UniformDequantizeOp)

UniformDequantize operation

構文:

operation ::= `mhlo.uniform_dequantize` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise conversion of quantized tensor operand to a floating-point tensor result according to the quantization parameters defined by the operand type.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_dequantize

例:

%result = mhlo.uniform_dequantize %operand : (tensor<16x16x!quant.uniform<i8:f32, 34.0:16>>) -> tensor<16x16xf32>

Traits: AlwaysSpeculatableImplTrait , Elementwise , InferTensorType , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
operand ranked tensor of per-tensor integer quantized or per-axis integer quantized values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float values

mhlo.uniform_quantize (mhlo::UniformQuantizeOp)

UniformQuantize operation

構文:

operation ::= `mhlo.uniform_quantize` $operand attr-dict
              `:` custom<SameOperandsAndResultType>(type($operand), type($result))

Performs element-wise conversion of floating-point tensor or quantized tensor operand to a quantized tensor result according to the quantization parameters defined by the result type.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_quantize

例:

%result = mhlo.uniform_quantize %operand : (tensor<16x16xf32>) -> tensor<16x16x!quant.uniform<ui8:f32, 34.0:16>>

Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
operand ranked tensor of 4/6/8/16/32/64-bit float or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values

結果:

結果説明
result ranked tensor of per-tensor integer quantized or per-axis integer quantized values

mhlo.while (mhlo::WhileOp)

While operation

Produces the output from executing body function 0 or more times while the cond function outputs true .

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#while

例:

%results0, %results1 = "mhlo.while"(%operand0, %operand1) ({
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = "mhlo.compare"(%arg0, %arg1) {
      comparison_direction = #stablehlo<comparison_direction LT>
    } : (tensor<i32>, tensor<i32>) -> tensor<i1>
    "mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
  ^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
    %0 = "mhlo.add"(%arg0, %constant0) : (tensor<i32>, tensor<i32>) -> tensor<i32>
    "mhlo.return"(%0, %arg1) : (tensor<i32>, tensor<i32>) -> ()
}) : (tensor<i32>, tensor<i32>) -> (tensor<i32>, tensor<i32>)

Traits: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock

Interfaces: InferTypeOpInterface , OpAsmOpInterface

Operands:

オペランド説明
operand variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values

結果:

結果説明
«unnamed» variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values

mhlo.xla.rng_get_and_update_state (mhlo::XlaRngGetAndUpdateStateOp)

XlaRngGetAndUpdateState operation

構文:

operation ::= `mhlo.xla.rng_get_and_update_state` attr-dict

This operation is private to the XLA compiler, so it is does not yet have a specification.

Informally, this operation represents the change of the global random number generator state for rng instructions. The global state is incremented by delta and the old state is returned.

The output is currently defined for a single output type. If this changes in the future to support multiple types, lowering to use of a global memref must ensure that a single memref is still used and updated appropriately.

Interfaces: InferTypeOpInterface

Attributes:

属性MLIR Type説明
delta ::mlir::IntegerAttr 64-bit signless integer attribute

結果:

結果説明
«unnamed» statically shaped tensor of 64-bit unsigned integer values

mhlo.xor (mhlo::XorOp)

Xor operation

構文:

operation ::= `mhlo.xor` $lhs `,` $rhs attr-dict
              `:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))

Performs element-wise XOR of two tensors lhs and rhs and produces a result tensor.

See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#xor

例:

%result = mhlo.xor %lhs, %rhs : tensor<2xi32>

Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape

Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

オペランド説明
lhs ranked tensor of bool or 2/4/8/16/32/64-bit integer values
rhs ranked tensor of bool or 2/4/8/16/32/64-bit integer values

結果:

結果説明
result ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values

属性

ArgResultAliasAttr

Attribute that models the alias relationship of entry function argument

This attribute captures the alias relationship of an MHLO main function argument to one of the results, denoted by resultIndex . The argTupleIndices and resultTupleIndices are used to index into nested tuples in operand and result respectively. If isMustAlias is true then the operand-result pair must alias.

This is meant to be used as an attribute on a function argument in MHLO. For example, in the following code it expresses that %arg1 may alias 0-th result.

func @main(%arg0: tensor<2xf32>, %arg1: tensor<3xf32> {mhlo.result_alias =
    mhlo.result_alias<result_index = [2], ...>}
  ) -> tensor<2xf32>, tensor<3xf32> {
  // function body ...
}

パラメータ:

パラメータC++ type説明
argTupleIndices ::llvm::ArrayRef<int64_t>寸法
resultIndex int64_t
resultTupleIndices ::llvm::ArrayRef<int64_t>寸法
isMustAlias bool

ChannelHandleAttr

Two 64-bit integers 'handle' and 'type'

構文:

#mhlo.channel_handle<
  int64_t,   # handle
  int64_t   # type
>

パラメータ:

パラメータC++ type説明
ハンドルint64_t
タイプint64_t

ComparisonDirectionAttr

Which comparison operation to perform.

構文:

#mhlo.comparison_direction<
  ::mlir::mhlo::ComparisonDirection   # value
>

パラメータ:

パラメータC++ type説明
価値::mlir::mhlo::ComparisonDirection an enum of type ComparisonDirection

ComparisonTypeAttr

Which comparison type to use.

構文:

#mhlo.comparison_type<
  ::mlir::mhlo::ComparisonType   # value
>

パラメータ:

パラメータC++ type説明
価値::mlir::mhlo::ComparisonType an enum of type ComparisonType

ConvDimensionNumbersAttr

Structure of dimension information for conv op

パラメータ:

パラメータC++ type説明
inputBatchDimension int64_t
inputFeatureDimension int64_t
inputSpatialDimensions ::llvm::ArrayRef<int64_t>寸法
kernelInputFeatureDimension int64_t
kernelOutputFeatureDimension int64_t
kernelSpatialDimensions ::llvm::ArrayRef<int64_t>寸法
outputBatchDimension int64_t
outputFeatureDimension int64_t
outputSpatialDimensions ::llvm::ArrayRef<int64_t>寸法

CrossProgramPrefetchAttr

Argument that is prefetched from another program

構文:

#mhlo.cross_program_prefetch<
  int64_t,   # parameter
  ::llvm::ArrayRef<int64_t>,   # indices
  std::optional<int64_t>   # offset
>

This attribute captures an argument that is prefetched from another program. For a given CrossProgramPrefetchAttr , parameter tells us which argument of the main function of the module is prefetched, and indices is a shape index telling us what subshape of that argument is prefetched.

A shape has a subshape iff it is a tuple. In that case, the subshape of the tuple by indices is the shape achieved after indexing by each element of indices in turn. For example, the [1,0] subshape of tuple<tuple<token, token>, tuple<tensor<i32>, token>> is tensor<i32> .

An empty value for indices means the whole shape is prefetched.

例えば、

module attributes { mhlo.cross_program_prefetch = [ #mhlo.cross_program_prefetch< parameter = 0, indices = [0]> ]} {
  func.func @copy(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
    %0 = "mhlo.copy"(%arg0) {is_cross_program_prefetch}
    return %0 : tuple<tensor<2x3xi32>, tensor<i32>>
  }
  func.func @main(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
    %1 = "mhlo.async_start"(%arg0) {called_computation=@copy}
    %2 = "mhlo.async_done"(%1) {called_computation=@copy}
    return %2 : tuple<tensor<2x3xi32>, tensor<i32>>
  }
}

The parameter = 0 tells us that the async copy of the 0 th parameter is a cross_program_prefetch , while the index of [0] tells us that the 0 th element of the tuple is prefetched while the other element of the tuple is not.

パラメータ:

パラメータC++ type説明
パラメータint64_t
インデックス::llvm::ArrayRef<int64_t>寸法
オフセットstd::optional<int64_t>

CustomCallScheduleAttr

Specifies the desired schedule for the custom-call.

構文:

#mhlo.custom_call_schedule<
  ::mlir::mhlo::CustomCallSchedule   # value
>

パラメータ:

パラメータC++ type説明
価値::mlir::mhlo::CustomCallSchedule an enum of type CustomCallSchedule

DequantizeModeAttr

_Dequantization mode. Only MIN COMBINED is supported.

構文:

#mhlo.dequantize_mode<
  ::mlir::mhlo::DequantizeMode   # value
>

パラメータ:

パラメータC++ type説明
価値::mlir::mhlo::DequantizeMode an enum of type DequantizeMode

DomainKindAttr

Kind of domain metatdata attached to an HLO domain.

構文:

#mhlo.kind<
  ::mlir::mhlo::DomainKind   # value
>

パラメータ:

パラメータC++ type説明
価値::mlir::mhlo::DomainKind an enum of type DomainKind

DotAlgorithmAttr

Attribute that models the algorithm constraints to use for computing dot.

構文:

#mhlo.dot_algorithm<
  Type,   # lhsPrecisionType
  Type,   # rhsPrecisionType
  Type,   # accumulationType
  int64_t,   # lhsComponentCount
  int64_t,   # rhsComponentCount
  int64_t,   # numPrimitiveOperations
  bool   # allowImpreciseAccumulation
>

パラメータ:

パラメータC++ type説明
lhsPrecisionType Type
rhsPrecisionType Type
accumulationType Type
lhsComponentCount int64_t
rhsComponentCount int64_t
numPrimitiveOperations int64_t
allowImpreciseAccumulation bool

DotDimensionNumbersAttr

Attribute that models the dimension information for dot.

パラメータ:

パラメータC++ type説明
lhsBatchingDimensions ::llvm::ArrayRef<int64_t>寸法
rhsBatchingDimensions ::llvm::ArrayRef<int64_t>寸法
lhsContractingDimensions ::llvm::ArrayRef<int64_t>寸法
rhsContractingDimensions ::llvm::ArrayRef<int64_t>寸法

FftTypeAttr

XLA fast fourier transform type.

構文:

#mhlo.fft_type<
  ::mlir::mhlo::FftType   # value
>

パラメータ:

パラメータC++ type説明
価値::mlir::mhlo::FftType an enum of type FftType

FusionKindAttr

Fusion kind

構文:

#mhlo.fusion_kind<
  ::mlir::mhlo::FusionKind   # value
>

パラメータ:

パラメータC++ type説明
価値::mlir::mhlo::FusionKind an enum of type FusionKind

GatherDimensionNumbersAttr

Attribute that models the dimension information for gather

パラメータ:

パラメータC++ type説明
offsetDims ::llvm::ArrayRef<int64_t>寸法
collapsedSliceDims ::llvm::ArrayRef<int64_t>寸法
operandBatchingDims ::llvm::ArrayRef<int64_t>寸法
startIndicesBatchingDims ::llvm::ArrayRef<int64_t>寸法
startIndexMap ::llvm::ArrayRef<int64_t>寸法
indexVectorDim int64_t

OutputOperandAliasAttr

Attribute that models the alias relationship of output and operand of a CustomCall op

構文:

#mhlo.output_operand_alias<
  ::llvm::ArrayRef<int64_t>,   # outputTupleIndices
  int64_t,   # operandIndex
  ::llvm::ArrayRef<int64_t>   # operandTupleIndices
>

This attribute captures the alias relationship of the output to one of the operands for a CustomCall op, denoted by operand_index . The output_tuple_indices and operand_tuple_indices are used to index into output and operand types. These indices lists are empty if the corresponding types are not tuple types, and can be arbitrarily long in case of arbitrarily nested tuple types.

See https://www.tensorflow.org/xla/aliasing

Example when used as array with in mhlo.custom-call:

%0 = "mhlo.custom_call"(%arg0, %arg1) {
  // other attributes
  output_operand_alias = [
    #mhlo.output_operand_alias<output_tuple_indices = [0],
                               operand_index = 0,
                               operand_tuple_indices = [1]>
  ]
} : (tuple<tensor<1x1xf32>, tensor<2x3xf32>>, tensor<5x5xf32>) -> tuple<tensor<2x3xf32>>

The output and the 0th operand are both tuples. The aliasing shows the
relationship between the 0th element in output tuple with the 1st element in
the 0th operand. And both of them are of the same type: tensor<2x3xf32>.

パラメータ:

パラメータC++ type説明
outputTupleIndices ::llvm::ArrayRef<int64_t>寸法
operandIndex int64_t
operandTupleIndices ::llvm::ArrayRef<int64_t>寸法

PrecisionAttr

XLA precision for an operand. Has backend specific meaning.

構文:

#mhlo.precision<
  ::mlir::mhlo::Precision   # value
>

パラメータ:

パラメータC++ type説明
価値::mlir::mhlo::Precision an enum of type Precision

RaggedDotDimensionNumbersAttr

Attribute that models the dimension information for ragged dot.

パラメータ:

パラメータC++ type説明
dotDimensionNumbers ::mlir::mhlo::DotDimensionNumbersAttr Attribute that models the dimension information for dot.
lhsRaggedDimensions ::llvm::ArrayRef<int64_t>寸法
rhsGroupDimensions ::llvm::ArrayRef<int64_t>寸法

ResultAccuracyAttr

The requested accuracy for unary ops.

パラメータ:

パラメータC++ type説明
atol APFloat
rtol APFloat
ulps int64_t
モード::mlir::mhlo::ResultAccuracyModeAttr XLA result accuracy mode.

ResultAccuracyModeAttr

XLA result accuracy mode.

構文:

#mhlo.result_accuracy_mode<
  ::mlir::mhlo::ResultAccuracyMode   # value
>

パラメータ:

パラメータC++ type説明
価値::mlir::mhlo::ResultAccuracyMode an enum of type ResultAccuracyMode

RngAlgorithmAttr

XLA PRNG algorithm to be used.

構文:

#mhlo.rng_algorithm<
  ::mlir::mhlo::RngAlgorithm   # value
>

パラメータ:

パラメータC++ type説明
価値::mlir::mhlo::RngAlgorithm an enum of type RngAlgorithm

RngDistributionAttr

XLA PRNG distribution to be used.

構文:

#mhlo.rng_distribution<
  ::mlir::mhlo::RngDistribution   # value
>

パラメータ:

パラメータC++ type説明
価値::mlir::mhlo::RngDistribution an enum of type RngDistribution

ScatterDimensionNumbersAttr

Attribute that models the dimension information for scatter

パラメータ:

パラメータC++ type説明
updateWindowDims ::llvm::ArrayRef<int64_t>寸法
insertedWindowDims ::llvm::ArrayRef<int64_t>寸法
inputBatchingDims ::llvm::ArrayRef<int64_t>寸法
scatterIndicesBatchingDims ::llvm::ArrayRef<int64_t>寸法
scatterDimsToOperandDims ::llvm::ArrayRef<int64_t>寸法
indexVectorDim int64_t

TransposeAttr

Transpose options

構文:

#mhlo.transpose<
  ::mlir::mhlo::Transpose   # value
>

パラメータ:

パラメータC++ type説明
価値::mlir::mhlo::Transpose an enum of type Transpose

TypeExtensionsAttr

Attribute that extends tensor type with MHLO type properties.

構文:

#mhlo.type_extensions<
  ::llvm::ArrayRef<int64_t>   # bounds
>

This attribute is used to extend MLIR tensor type with MHLO tensor specific properties. These properties aren't modeled in the MLIR type. This attribute is set in the encoding field of the tensor type.

See HLO_BoundedAttrInterface for documentation for bounds .

パラメータ:

パラメータC++ type説明
境界::llvm::ArrayRef<int64_t>

種類

AsyncBundleType

Opaque collection of other types

構文:

!mhlo.async_bundle<
  ::llvm::ArrayRef<Type>   # types
>

パラメータ:

パラメータC++ type説明
種類::llvm::ArrayRef<Type>

列挙型

ComparisonDirection

Which comparison operation to perform.

事例:

シンボル価値
イコライザー0イコライザー
北東1北東
GE 2 GE
GT 3 GT
4
LT 5 LT

ComparisonType

Which comparison type to use.

事例:

シンボル価値
NOTYPE 0 NOTYPE
フロート1フロート
TOTALORDER 2 TOTALORDER
SIGNED 3 SIGNED
署名なし4署名なし

CustomCallApiVersion

Custom call API version

事例:

シンボル価値
API_VERSION_UNSPECIFIED 0 API_VERSION_UNSPECIFIED
API_VERSION_ORIGINAL 1 API_VERSION_ORIGINAL
API_VERSION_STATUS_RETURNING 2 API_VERSION_STATUS_RETURNING
API_VERSION_STATUS_RETURNING_UNIFIED 3 API_VERSION_STATUS_RETURNING_UNIFIED
API_VERSION_TYPED_FFI 4 API_VERSION_TYPED_FFI

CustomCallSchedule

Specifies the desired schedule for the custom-call.

事例:

シンボル価値
なし0なし
最新1最新
EARLIEST 2 EARLIEST

DequantizeMode

_Dequantization mode. Only MIN COMBINED is supported.

事例:

シンボル価値
MIN_COMBINED 0 MIN_COMBINED

DomainKind

Kind of domain metatdata attached to an HLO domain.

事例:

シンボル価値
シャーディング0シャーディング

FftType

XLA fast fourier transform type.

事例:

シンボル価値
FFT 0 FFT
IFFT 1 IFFT
RFFT 2 RFFT
IRFFT 3 IRFFT

FusionKind

Fusion kind

事例:

シンボル価値
kLoop 0 kLoop
kInput 1 kInput
kOutput 2 kOutput
kCustom 3 kCustom

精度

XLA precision for an operand. Has backend specific meaning.

事例:

シンボル価値
デフォルト0デフォルト
高い1高い
最高2最高

ResultAccuracyMode

XLA result accuracy mode.

事例:

シンボル価値
デフォルト0デフォルト
最高1最高
許容範囲2許容範囲

RngAlgorithm

XLA PRNG algorithm to be used.

事例:

シンボル価値
デフォルト0デフォルト
THREE_FRY 1 THREE_FRY
PHILOX 2 PHILOX

RngDistribution

XLA PRNG distribution to be used.

事例:

シンボル価値
UNIFORM 1 UNIFORM
普通2普通

転置

Transpose options

事例:

シンボル価値
TRANSPOSE_INVALID 0 TRANSPOSE_INVALID
NO_TRANSPOSE 1 NO_TRANSPOSE
転置2転置
ADJOINT 3 ADJOINT