Missed TensorFlow Dev Summit? Check out the video playlist. Watch recordings

tfq.convert_to_tensor

Convert lists of tfq supported primitives to tensor representations.

tfq.convert_to_tensor(
    *args, **kwargs
)

Recursively convert a nested lists of cirq.PauliSum or cirq.Circuit objects to a tf.Tensor representation. Note that cirq serialization only supports cirq.GridQubits so we also require that input circuits and pauli sums are defined only on cirq.GridQubits.

my_qubits = cirq.GridQubit.rect(1, 2) 
my_circuits = [cirq.Circuit(cirq.X(my_qubits[0])), 
               cirq.Circuit(cirq.Z(my_qubits[0])) 
] 
tensor_input = tfq.convert_to_tensor(my_circuits) 
# Now tensor_input can be used as model input etc. 
same_circuits = tfq.from_tensor(tensor_input) 
# same_circuits now holds cirq.Circuit objects once more. 
same_circuits 
[cirq.Circuit([ 
    cirq.Moment(operations=[ 
        cirq.X.on(cirq.GridQubit(0, 0)), 
    ]), 
]) 
 cirq.Circuit([ 
    cirq.Moment(operations=[ 
        cirq.Z.on(cirq.GridQubit(0, 0)), 
    ]), 
])] 

Args:

  • items_to_convert: Python list or nested list of cirq.Circuit or cirq.Paulisum objects. Should be rectangular, or this function will error.

Returns:

tf.Tensor that represents the input items.