Help protect the Great Barrier Reef with TensorFlow on Kaggle Join Challenge

Module: tfr.data

Input data parsing for tf-ranking library.

Supports the following data formats:

  • tf.train.SequenceExample
  • tf.train.Example in tf.train.Example.

Functions

build_ranking_dataset(...): Builds a ranking tf.dataset with a standard data format.

build_ranking_dataset_with_parsing_fn(...): Builds a ranking tf.dataset using the provided parsing_fn.

build_ranking_serving_input_receiver_fn(...): Returns a serving input receiver fn for a standard data format.

build_ranking_serving_input_receiver_fn_with_parsing_fn(...): Returns a receiver function with the provided parsing_fn.

build_sequence_example_serving_input_receiver_fn(...): Creates a serving_input_receiver_fn for SequenceExample inputs.

build_tf_example_serving_input_receiver_fn(...): Builds a serving input fn for tensorflow.training.Example.

make_parsing_fn(...): Returns a parsing fn for a standard data format.

parse_from_example_in_example(...): Parses an ExampleInExample batch to a feature map.

parse_from_example_list(...): Parses an ExampleListWithContext batch to a feature map.

parse_from_sequence_example(...): Parses SequenceExample to feature maps.

parse_from_tf_example(...): Parse function to convert tf.train.Example to feature maps.

read_batched_sequence_example_dataset(...): Returns a Dataset of features from SequenceExample.

EIE 'example_in_example'
ELWC 'example_list_with_context'
SEQ 'sequence_example'