Perguntas sobre TFX? Junte-se a nós no Google I / O!
Esta página foi traduzida pela API Cloud Translation.
Switch to English

Treine e forneça um modelo do TensorFlow com o TensorFlow Serving

Este guia treina um modelo de rede neural para classificar imagens de roupas, como tênis e camisas , salva o modelo treinado e o exibe com o TensorFlow Serving . O foco está no TensorFlow Serving, em vez de modelagem e treinamento no TensorFlow, portanto, para um exemplo completo que se concentra na modelagem e treinamento, consulte o exemplo de Classificação Básica

Este guia usa tf.keras , uma API de alto nível para criar e treinar modelos no TensorFlow.

import sys

# Confirm that we're using Python 3
assert sys.version_info.major is 3, 'Oops, not running Python 3. Use Runtime > Change runtime type'
# TensorFlow and tf.keras
print("Installing dependencies for Colab environment")
!pip install -Uq grpcio==1.26.0

import tensorflow as tf
from tensorflow import keras

# Helper libraries
import numpy as np
import matplotlib.pyplot as plt
import os
import subprocess

print('TensorFlow version: {}'.format(tf.__version__))

Crie o seu modelo

Importe o conjunto de dados Fashion MNIST

Este guia usa o conjunto de dados Fashion MNIST, que contém 70.000 imagens em tons de cinza em 10 categorias. As imagens mostram peças individuais de roupa em baixa resolução (28 por 28 pixels), como pode ser visto aqui:

Sprite da moda MNIST
Figura 1. Amostras do Fashion-MNIST (por Zalando, MIT License).

O Fashion MNIST pretende ser um substituto imediato para o conjunto de dados MNIST clássico - frequentemente usado como o "Hello, World" dos programas de aprendizado de máquina para visão computacional. Você pode acessar o Fashion MNIST diretamente do TensorFlow, basta importar e carregar os dados.

fashion_mnist = keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

# scale the values to 0.0 to 1.0
train_images = train_images / 255.0
test_images = test_images / 255.0

# reshape for feeding into the model
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1)
test_images = test_images.reshape(test_images.shape[0], 28, 28, 1)

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

print('\ntrain_images.shape: {}, of {}'.format(train_images.shape, train_images.dtype))
print('test_images.shape: {}, of {}'.format(test_images.shape, test_images.dtype))
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-labels-idx1-ubyte.gz
32768/29515 [=================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/train-images-idx3-ubyte.gz
26427392/26421880 [==============================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-labels-idx1-ubyte.gz
8192/5148 [===============================================] - 0s 0us/step
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/t10k-images-idx3-ubyte.gz
4423680/4422102 [==============================] - 0s 0us/step

train_images.shape: (60000, 28, 28, 1), of float64
test_images.shape: (10000, 28, 28, 1), of float64

Treine e avalie seu modelo

Vamos usar o CNN mais simples possível, já que não estamos focados na parte de modelagem.

model = keras.Sequential([
  keras.layers.Conv2D(input_shape=(28,28,1), filters=8, kernel_size=3, 
                      strides=2, activation='relu', name='Conv1'),
  keras.layers.Flatten(),
  keras.layers.Dense(10, name='Dense')
])
model.summary()

testing = False
epochs = 5

model.compile(optimizer='adam', 
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=[keras.metrics.SparseCategoricalAccuracy()])
model.fit(train_images, train_labels, epochs=epochs)

test_loss, test_acc = model.evaluate(test_images, test_labels)
print('\nTest accuracy: {}'.format(test_acc))
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
Conv1 (Conv2D)               (None, 13, 13, 8)         80        
_________________________________________________________________
flatten (Flatten)            (None, 1352)              0         
_________________________________________________________________
Dense (Dense)                (None, 10)                13530     
=================================================================
Total params: 13,610
Trainable params: 13,610
Non-trainable params: 0
_________________________________________________________________
Epoch 1/5
1875/1875 [==============================] - 13s 2ms/step - loss: 0.7546 - sparse_categorical_accuracy: 0.7457
Epoch 2/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.4254 - sparse_categorical_accuracy: 0.8521
Epoch 3/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3812 - sparse_categorical_accuracy: 0.8668
Epoch 4/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3557 - sparse_categorical_accuracy: 0.8770
Epoch 5/5
1875/1875 [==============================] - 3s 2ms/step - loss: 0.3415 - sparse_categorical_accuracy: 0.8795
313/313 [==============================] - 1s 2ms/step - loss: 0.3699 - sparse_categorical_accuracy: 0.8694

Test accuracy: 0.8694000244140625

Salve seu modelo

Para carregar nosso modelo treinado no TensorFlow Serving, primeiro precisamos salvá-lo no formato SavedModel . Isso criará um arquivo protobuf em uma hierarquia de diretórios bem definida e incluirá um número de versão. O TensorFlow Serving nos permite selecionar qual versão de um modelo ou "servível" queremos usar ao fazer solicitações de inferência. Cada versão será exportada para um subdiretório diferente no caminho fornecido.

# Fetch the Keras session and save the model
# The signature definition is defined by the input and output tensors,
# and stored with the default serving key
import tempfile

MODEL_DIR = tempfile.gettempdir()
version = 1
export_path = os.path.join(MODEL_DIR, str(version))
print('export_path = {}\n'.format(export_path))

tf.keras.models.save_model(
    model,
    export_path,
    overwrite=True,
    include_optimizer=True,
    save_format=None,
    signatures=None,
    options=None
)

print('\nSaved model:')
!ls -l {export_path}
export_path = /tmp/1

INFO:tensorflow:Assets written to: /tmp/1/assets

Saved model:
total 88
drwxr-xr-x 2 kbuilder kbuilder  4096 Mar  9 10:10 assets
-rw-rw-r-- 1 kbuilder kbuilder 78123 Mar  9 10:10 saved_model.pb
drwxr-xr-x 2 kbuilder kbuilder  4096 Mar  9 10:10 variables

Examine o seu modelo salvo

Usaremos o utilitário de linha de comando saved_model_cli para examinar os MetaGraphDefs (os modelos) e SignatureDefs (os métodos que você pode chamar) em nosso SavedModel. Veja esta discussão sobre a CLI SavedModel no Guia do TensorFlow.

saved_model_cli show --dir {export_path} --all
2021-03-09 10:10:12.685464: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0

MetaGraphDef with tag-set: 'serve' contains the following SignatureDefs:

signature_def['__saved_model_init_op']:
  The given SavedModel SignatureDef contains the following input(s):
  The given SavedModel SignatureDef contains the following output(s):
    outputs['__saved_model_init_op'] tensor_info:
        dtype: DT_INVALID
        shape: unknown_rank
        name: NoOp
  Method name is: 

signature_def['serving_default']:
  The given SavedModel SignatureDef contains the following input(s):
    inputs['Conv1_input'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 28, 28, 1)
        name: serving_default_Conv1_input:0
  The given SavedModel SignatureDef contains the following output(s):
    outputs['Dense'] tensor_info:
        dtype: DT_FLOAT
        shape: (-1, 10)
        name: StatefulPartitionedCall:0
  Method name is: tensorflow/serving/predict

Defined Functions:
  Function Name: '__call__'
    Option #1
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')
        Argument #2
          DType: bool
          Value: False
        Argument #3
          DType: NoneType
          Value: None
    Option #2
      Callable with:
        Argument #1
          inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs')
        Argument #2
          DType: bool
          Value: False
        Argument #3
          DType: NoneType
          Value: None
    Option #3
      Callable with:
        Argument #1
          inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs')
        Argument #2
          DType: bool
          Value: True
        Argument #3
          DType: NoneType
          Value: None
    Option #4
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')
        Argument #2
          DType: bool
          Value: True
        Argument #3
          DType: NoneType
          Value: None

  Function Name: '_default_save_signature'
    Option #1
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')

  Function Name: 'call_and_return_all_conditional_losses'
    Option #1
      Callable with:
        Argument #1
          inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs')
        Argument #2
          DType: bool
          Value: False
        Argument #3
          DType: NoneType
          Value: None
    Option #2
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')
        Argument #2
          DType: bool
          Value: True
        Argument #3
          DType: NoneType
          Value: None
    Option #3
      Callable with:
        Argument #1
          Conv1_input: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='Conv1_input')
        Argument #2
          DType: bool
          Value: False
        Argument #3
          DType: NoneType
          Value: None
    Option #4
      Callable with:
        Argument #1
          inputs: TensorSpec(shape=(None, 28, 28, 1), dtype=tf.float32, name='inputs')
        Argument #2
          DType: bool
          Value: True
        Argument #3
          DType: NoneType
          Value: None

Isso nos diz muito sobre nosso modelo! Neste caso apenas treinamos nosso modelo, então já sabemos as entradas e saídas, mas se não o fizéssemos, esta seria uma informação importante. Não nos diz tudo, como o fato de que se trata de dados de imagem em tons de cinza, por exemplo, mas é um ótimo começo.

Sirva seu modelo com o TensorFlow Serving

Adicione o URI de distribuição do TensorFlow Serving como uma fonte de pacote:

Estamos nos preparando para instalar o TensorFlow Serving usando o Aptitude, já que este Colab é executado em um ambiente Debian. Adicionaremos o tensorflow-model-server à lista de pacotes que o Aptitude conhece. Observe que estamos executando como root.

import sys
# We need sudo prefix if not on a Google Colab.
if 'google.colab' not in sys.modules:
  SUDO_IF_NEEDED = 'sudo'
else:
  SUDO_IF_NEEDED = ''
# This is the same as you would do from your command line, but without the [arch=amd64], and no sudo
# You would instead do:
# echo "deb [arch=amd64] http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | sudo tee /etc/apt/sources.list.d/tensorflow-serving.list && \
# curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | sudo apt-key add -

!echo "deb http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | {SUDO_IF_NEEDED} tee /etc/apt/sources.list.d/tensorflow-serving.list && \
curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | {SUDO_IF_NEEDED} apt-key add -
!{SUDO_IF_NEEDED} apt update
deb http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100  2943  100  2943    0     0  15822      0 --:--:-- --:--:-- --:--:-- 15822
OK
Hit:1 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic InRelease
Hit:2 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates InRelease
Hit:3 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-backports InRelease
Hit:4 http://packages.cloud.google.com/apt google-cloud-logging-wheezy InRelease
Get:5 https://packages.cloud.google.com/apt eip-cloud-bionic InRelease [5419 B]
Hit:6 https://nvidia.github.io/libnvidia-container/stable/ubuntu18.04/amd64  InRelease
Hit:7 https://nvidia.github.io/nvidia-container-runtime/ubuntu18.04/amd64  InRelease
Get:8 https://nvidia.github.io/nvidia-docker/ubuntu18.04/amd64  InRelease [1129 B]
Get:9 http://storage.googleapis.com/tensorflow-serving-apt stable InRelease [3012 B]
Hit:10 http://archive.canonical.com/ubuntu bionic InRelease
Hit:11 http://security.ubuntu.com/ubuntu bionic-security InRelease
Get:12 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server amd64 Packages [340 B]
Get:13 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server-universal amd64 Packages [348 B]
Fetched 10.2 kB in 1s (7051 B/s)



114 packages can be upgraded. Run 'apt list --upgradable' to see them.

Instalar o TensorFlow Serving

Isso é tudo que você precisa - uma linha de comando!

{SUDO_IF_NEEDED} apt-get install tensorflow-model-server
The following packages were automatically installed and are no longer required:
  adwaita-icon-theme ca-certificates-java dconf-gsettings-backend
  dconf-service default-jre default-jre-headless dkms fonts-dejavu-extra
  freeglut3 freeglut3-dev g++-6 glib-networking glib-networking-common
  glib-networking-services gsettings-desktop-schemas gtk-update-icon-cache
  hicolor-icon-theme humanity-icon-theme java-common libaccinj64-9.1
  libasound2 libasound2-data libasyncns0 libatk-bridge2.0-0
  libatk-wrapper-java libatk-wrapper-java-jni libatk1.0-0 libatk1.0-data
  libatspi2.0-0 libavahi-client3 libavahi-common-data libavahi-common3
  libcairo-gobject2 libcolord2 libcroco3 libcudart9.1 libcufft9.1 libcufftw9.1
  libcups2 libcurand9.1 libcusolver9.1 libcusparse9.1 libdconf1 libdrm-amdgpu1
  libdrm-dev libdrm-intel1 libdrm-nouveau2 libdrm-radeon1 libegl-mesa0 libegl1
  libegl1-mesa libepoxy0 libflac8 libfontenc1 libgbm1 libgdk-pixbuf2.0-0
  libgdk-pixbuf2.0-common libgif7 libgl1 libgl1-mesa-dev libgl1-mesa-dri
  libglapi-mesa libgles1 libgles2 libglu1-mesa libglu1-mesa-dev
  libglvnd-core-dev libglvnd-dev libglvnd0 libglx-mesa0 libglx0 libgtk-3-0
  libgtk-3-common libgtk2.0-0 libgtk2.0-common libice-dev libjansson4
  libjson-glib-1.0-0 libjson-glib-1.0-common liblcms2-2 libllvm9 libnppc9.1
  libnppial9.1 libnppicc9.1 libnppicom9.1 libnppidei9.1 libnppif9.1
  libnppig9.1 libnppim9.1 libnppist9.1 libnppisu9.1 libnppitc9.1 libnpps9.1
  libnvrtc9.1 libnvtoolsext1 libnvvm3 libogg0 libopengl0 libpciaccess0
  libpcsclite1 libproxy1v5 libpthread-stubs0-dev libpulse0 librest-0.7-0
  librsvg2-2 librsvg2-common libsensors4 libsm-dev libsndfile1
  libsoup-gnome2.4-1 libsoup2.4-1 libstdc++-6-dev libthrust-dev libvdpau-dev
  libvdpau1 libvorbis0a libvorbisenc2 libwayland-client0 libwayland-cursor0
  libwayland-egl1 libwayland-server0 libx11-dev libx11-xcb-dev libx11-xcb1
  libxau-dev libxcb-dri2-0 libxcb-dri2-0-dev libxcb-dri3-0 libxcb-dri3-dev
  libxcb-glx0 libxcb-glx0-dev libxcb-present-dev libxcb-present0 libxcb-randr0
  libxcb-randr0-dev libxcb-render0-dev libxcb-shape0 libxcb-shape0-dev
  libxcb-sync-dev libxcb-sync1 libxcb-xfixes0 libxcb-xfixes0-dev libxcb1-dev
  libxcomposite1 libxcursor1 libxdamage-dev libxdamage1 libxdmcp-dev
  libxext-dev libxfixes-dev libxfixes3 libxfont2 libxft2 libxi-dev libxi6
  libxinerama1 libxkbcommon0 libxkbfile1 libxmu-dev libxmu-headers libxnvctrl0
  libxrandr2 libxshmfence-dev libxshmfence1 libxt-dev libxtst6 libxv1
  libxxf86dga1 libxxf86vm-dev libxxf86vm1 linux-gcp-5.3-headers-5.3.0-1030
  linux-gcp-headers-5.0.0-1026 linux-headers-5.3.0-1030-gcp
  linux-image-5.3.0-1030-gcp linux-modules-5.3.0-1030-gcp
  linux-modules-extra-5.3.0-1030-gcp mesa-common-dev ocl-icd-libopencl1
  ocl-icd-opencl-dev opencl-c-headers openjdk-11-jre openjdk-11-jre-headless
  openjdk-8-jre openjdk-8-jre-headless pkg-config policykit-1-gnome
  python3-xkit screen-resolution-extra ubuntu-mono x11-utils x11-xkb-utils
  x11proto-core-dev x11proto-damage-dev x11proto-dev x11proto-fixes-dev
  x11proto-input-dev x11proto-xext-dev x11proto-xf86vidmode-dev
  xorg-sgml-doctools xserver-common xserver-xorg-core-hwe-18.04 xtrans-dev
Use 'sudo apt autoremove' to remove them.
The following NEW packages will be installed:
  tensorflow-model-server
0 upgraded, 1 newly installed, 0 to remove and 114 not upgraded.
Need to get 223 MB of archives.
After this operation, 0 B of additional disk space will be used.
Get:1 http://storage.googleapis.com/tensorflow-serving-apt stable/tensorflow-model-server amd64 tensorflow-model-server all 2.4.1 [223 MB]
Fetched 223 MB in 6s (40.3 MB/s)
Selecting previously unselected package tensorflow-model-server.
(Reading database ... 242337 files and directories currently installed.)
Preparing to unpack .../tensorflow-model-server_2.4.1_all.deb ...
Unpacking tensorflow-model-server (2.4.1) ...
Setting up tensorflow-model-server (2.4.1) ...

Comece a executar o TensorFlow Serving

É aqui que começamos a executar o TensorFlow Serving e carregamos nosso modelo. Depois de carregar, podemos começar a fazer solicitações de inferência usando REST. Existem alguns parâmetros importantes:

  • rest_api_port : a porta que você usará para solicitações REST.
  • model_name : você usará isso na URL de solicitações REST. Pode ser qualquer coisa.
  • model_base_path : este é o caminho para o diretório onde você salvou seu modelo.
os.environ["MODEL_DIR"] = MODEL_DIR
nohup tensorflow_model_server \
  --rest_api_port=8501 \
  --model_name=fashion_model \
  --model_base_path="${MODEL_DIR}" >server.log 2>&1
tail server.log

Faça uma solicitação ao seu modelo no TensorFlow Serving

Primeiro, vamos dar uma olhada em um exemplo aleatório de nossos dados de teste.

def show(idx, title):
  plt.figure()
  plt.imshow(test_images[idx].reshape(28,28))
  plt.axis('off')
  plt.title('\n\n{}'.format(title), fontdict={'size': 16})

import random
rando = random.randint(0,len(test_images)-1)
show(rando, 'An Example Image: {}'.format(class_names[test_labels[rando]]))

png

Ok, isso parece interessante. É difícil para você reconhecer isso? Agora vamos criar o objeto JSON para um lote de três solicitações de inferência e ver como nosso modelo reconhece as coisas:

import json
data = json.dumps({"signature_name": "serving_default", "instances": test_images[0:3].tolist()})
print('Data: {} ... {}'.format(data[:50], data[len(data)-52:]))
Data: {"signature_name": "serving_default", "instances": ...  [0.0], [0.0], [0.0], [0.0], [0.0], [0.0], [0.0]]]]}

Faça solicitações REST

Versão mais recente do servable

Enviaremos uma solicitação de previsão como POST para o endpoint REST de nosso servidor e passaremos três exemplos. Solicitaremos ao nosso servidor que nos forneça a versão mais recente de nosso serviço, não especificando uma versão em particular.

!pip install -q requests

import requests
headers = {"content-type": "application/json"}
json_response = requests.post('http://localhost:8501/v1/models/fashion_model:predict', data=data, headers=headers)
predictions = json.loads(json_response.text)['predictions']

show(0, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format(
  class_names[np.argmax(predictions[0])], np.argmax(predictions[0]), class_names[test_labels[0]], test_labels[0]))

Uma versão particular do servable

Agora vamos especificar uma versão particular do nosso servable. Como temos apenas um, vamos selecionar a versão 1. Também examinaremos os três resultados.

headers = {"content-type": "application/json"}
json_response = requests.post('http://localhost:8501/v1/models/fashion_model/versions/1:predict', data=data, headers=headers)
predictions = json.loads(json_response.text)['predictions']

for i in range(0,3):
  show(i, 'The model thought this was a {} (class {}), and it was actually a {} (class {})'.format(
    class_names[np.argmax(predictions[i])], np.argmax(predictions[i]), class_names[test_labels[i]], test_labels[i]))

png

png

png