Returns a batched matrix tensor with new batched diagonal values.
Given `input` and `diagonal`, this operation returns a tensor with the same shape and values as `input`, except for the specified diagonals of the innermost matrices. These will be overwritten by the values in `diagonal`.
`input` has `r+1` dimensions `[I, J, ..., L, M, N]`. When `k` is scalar or `k[0] == k[1]`, `diagonal` has `r` dimensions `[I, J, ..., L, max_diag_len]`. Otherwise, it has `r+1` dimensions `[I, J, ..., L, num_diags, max_diag_len]`. `num_diags` is the number of diagonals, `num_diags = k[1] - k[0] + 1`. `max_diag_len` is the longest diagonal in the range `[k[0], k[1]]`, `max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))`
The output is a tensor of rank `k+1` with dimensions `[I, J, ..., L, M, N]`. If `k` is scalar or `k[0] == k[1]`:
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, n-max(k[1], 0)] ; if n - m == k[1]
input[i, j, ..., l, m, n] ; otherwise
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1]
input[i, j, ..., l, m, n] ; otherwise
For example:
# The main diagonal.
input = np.array([[[7, 7, 7, 7], # Input shape: (2, 3, 4)
[7, 7, 7, 7],
[7, 7, 7, 7]],
[[7, 7, 7, 7],
[7, 7, 7, 7],
[7, 7, 7, 7]]])
diagonal = np.array([[1, 2, 3], # Diagonal shape: (2, 3)
[4, 5, 6]])
tf.matrix_set_diag(diagonal) ==> [[[1, 7, 7, 7], # Output shape: (2, 3, 4)
[7, 2, 7, 7],
[7, 7, 3, 7]],
[[4, 7, 7, 7],
[7, 5, 7, 7],
[7, 7, 6, 7]]]
# A superdiagonal (per batch).
tf.matrix_set_diag(diagonal, k = 1)
==> [[[7, 1, 7, 7], # Output shape: (2, 3, 4)
[7, 7, 2, 7],
[7, 7, 7, 3]],
[[7, 4, 7, 7],
[7, 7, 5, 7],
[7, 7, 7, 6]]]
# A band of diagonals.
diagonals = np.array([[[1, 2, 3], # Diagonal shape: (2, 2, 3)
[4, 5, 0]],
[[6, 1, 2],
[3, 4, 0]]])
tf.matrix_set_diag(diagonals, k = (-1, 0))
==> [[[1, 7, 7, 7], # Output shape: (2, 3, 4)
[4, 2, 7, 7],
[0, 5, 3, 7]],
[[6, 7, 7, 7],
[3, 1, 7, 7],
[7, 4, 2, 7]]]
Public Methods
Output <T> |
asOutput
()
Returns the symbolic handle of a tensor.
|
static <T> MatrixSetDiagV2 <T> | |
Output <T> |
output
()
Rank `r+1`, with `output.shape = input.shape`.
|
Inherited Methods
Public Methods
public Output <T> asOutput ()
Returns the symbolic handle of a tensor.
Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.
public static MatrixSetDiagV2 <T> create ( Scope scope, Operand <T> input, Operand <T> diagonal, Operand <Integer> k)
Factory method to create a class wrapping a new MatrixSetDiagV2 operation.
Parameters
scope | current scope |
---|---|
input | Rank `r+1`, where `r >= 1`. |
diagonal | Rank `r` when `k` is an integer or `k[0] == k[1]`. Otherwise, it has rank `r+1`. `k >= 1`. |
k | Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals. `k` can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band. `k[0]` must not be larger than `k[1]`. |
Returns
- a new instance of MatrixSetDiagV2