MirrorPad

public final class MirrorPad

Pads a tensor with mirrored values.

This operation pads a `input` with mirrored values according to the `paddings` you specify. `paddings` is an integer tensor with shape `[n, 2]`, where n is the rank of `input`. For each dimension D of `input`, `paddings[D, 0]` indicates how many values to add before the contents of `input` in that dimension, and `paddings[D, 1]` indicates how many values to add after the contents of `input` in that dimension. Both `paddings[D, 0]` and `paddings[D, 1]` must be no greater than `input.dim_size(D)` (or `input.dim_size(D) - 1`) if `copy_border` is true (if false, respectively).

The padded size of each dimension D of the output is:

`paddings(D, 0) + input.dim_size(D) + paddings(D, 1)`

For example:

# 't' is [[1, 2, 3], [4, 5, 6]].
 # 'paddings' is [[1, 1]], [2, 2]].
 # 'mode' is SYMMETRIC.
 # rank of 't' is 2.
 pad(t, paddings) ==> [[2, 1, 1, 2, 3, 3, 2]
                       [2, 1, 1, 2, 3, 3, 2]
                       [5, 4, 4, 5, 6, 6, 5]
                       [5, 4, 4, 5, 6, 6, 5]]
 

Public Methods

Output <T>
asOutput ()
Returns the symbolic handle of a tensor.
static <T, U extends Number> MirrorPad <T>
create ( Scope scope, Operand <T> input, Operand <U> paddings, String mode)
Factory method to create a class wrapping a new MirrorPad operation.
Output <T>
output ()
The padded tensor.

Inherited Methods

Public Methods

public Output <T> asOutput ()

Returns the symbolic handle of a tensor.

Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.

public static MirrorPad <T> create ( Scope scope, Operand <T> input, Operand <U> paddings, String mode)

Factory method to create a class wrapping a new MirrorPad operation.

Parameters
scope current scope
input The input tensor to be padded.
paddings A two-column matrix specifying the padding sizes. The number of rows must be the same as the rank of `input`.
mode Either `REFLECT` or `SYMMETRIC`. In reflect mode the padded regions do not include the borders, while in symmetric mode the padded regions do include the borders. For example, if `input` is `[1, 2, 3]` and `paddings` is `[0, 2]`, then the output is `[1, 2, 3, 2, 1]` in reflect mode, and it is `[1, 2, 3, 3, 2]` in symmetric mode.
Returns
  • a new instance of MirrorPad

public Output <T> output ()

The padded tensor.