Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
That is for rows we have grad for, we update var and accum as follows:
Nested Classes
class | SparseApplyAdagradV2.Options |
Optional attributes for
SparseApplyAdagradV2
|
Public Methods
Output <T> |
asOutput
()
Returns the symbolic handle of a tensor.
|
static <T, U extends Number> SparseApplyAdagradV2 <T> | |
Output <T> |
out
()
Same as "var".
|
static SparseApplyAdagradV2.Options |
updateSlots
(Boolean updateSlots)
|
static SparseApplyAdagradV2.Options |
useLocking
(Boolean useLocking)
|
Inherited Methods
Public Methods
public Output <T> asOutput ()
Returns the symbolic handle of a tensor.
Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.
public static SparseApplyAdagradV2 <T> create ( Scope scope, Operand <T> var, Operand <T> accum, Operand <T> lr, Operand <T> epsilon, Operand <T> grad, Operand <U> indices, Options... options)
Factory method to create a class wrapping a new SparseApplyAdagradV2 operation.
Parameters
scope | current scope |
---|---|
var | Should be from a Variable(). |
accum | Should be from a Variable(). |
lr | Learning rate. Must be a scalar. |
epsilon | Constant factor. Must be a scalar. |
grad | The gradient. |
indices | A vector of indices into the first dimension of var and accum. |
options | carries optional attributes values |
Returns
- a new instance of SparseApplyAdagradV2
public static SparseApplyAdagradV2.Options useLocking (Boolean useLocking)
Parameters
useLocking | If `True`, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention. |
---|