Classes
| Abort | Raise a exception to abort the process when called. |
| Abort.Options |
Optional attributes for
Abort
|
| All | Computes the "logical and" of elements across dimensions of a tensor. |
| All.Options |
Optional attributes for
All
|
| AllToAll <T> | An Op to exchange data across TPU replicas. |
| AnonymousIteratorV2 | A container for an iterator resource. |
| AnonymousMemoryCache | |
| AnonymousMultiDeviceIterator | A container for a multi device iterator resource. |
| AnonymousRandomSeedGenerator | |
| AnonymousSeedGenerator | |
| Any | Computes the "logical or" of elements across dimensions of a tensor. |
| Any.Options |
Optional attributes for
Any
|
| ApplyAdagradV2 <T> | Update '*var' according to the adagrad scheme. |
| ApplyAdagradV2.Options |
Optional attributes for
ApplyAdagradV2
|
| AssertCardinalityDataset | |
| AssertNextDataset | A transformation that asserts which transformations happen next. |
| AssertThat | Asserts that the given condition is true. |
| AssertThat.Options |
Optional attributes for
AssertThat
|
| Assign <T> | Update 'ref' by assigning 'value' to it. |
| Assign.Options |
Optional attributes for
Assign
|
| AssignAdd <T> | Update 'ref' by adding 'value' to it. |
| AssignAdd.Options |
Optional attributes for
AssignAdd
|
| AssignAddVariableOp | Adds a value to the current value of a variable. |
| AssignSub <T> | Update 'ref' by subtracting 'value' from it. |
| AssignSub.Options |
Optional attributes for
AssignSub
|
| AssignSubVariableOp | Subtracts a value from the current value of a variable. |
| AssignVariableOp | Assigns a new value to a variable. |
| AutoShardDataset | Creates a dataset that shards the input dataset. |
| AutoShardDataset.Options |
Optional attributes for
AutoShardDataset
|
| BandedTriangularSolve <T> | |
| BandedTriangularSolve.Options |
Optional attributes for
BandedTriangularSolve
|
| Barrier | Defines a barrier that persists across different graph executions. |
| Barrier.Options |
Optional attributes for
Barrier
|
| BarrierClose | Closes the given barrier. |
| BarrierClose.Options |
Optional attributes for
BarrierClose
|
| BarrierIncompleteSize | Computes the number of incomplete elements in the given barrier. |
| BarrierInsertMany | For each key, assigns the respective value to the specified component. |
| BarrierReadySize | Computes the number of complete elements in the given barrier. |
| BarrierTakeMany | Takes the given number of completed elements from a barrier. |
| BarrierTakeMany.Options |
Optional attributes for
BarrierTakeMany
|
| Batch | Batches all input tensors nondeterministically. |
| Batch.Options |
Optional attributes for
Batch
|
| BatchMatMulV2 <T> | Multiplies slices of two tensors in batches. |
| BatchMatMulV2.Options |
Optional attributes for
BatchMatMulV2
|
| BatchToSpace <T> | BatchToSpace for 4-D tensors of type T. |
| BatchToSpaceNd <T> | BatchToSpace for N-D tensors of type T. |
| BesselI0 <T extends Number> | |
| BesselI1 <T extends Number> | |
| BesselJ0 <T extends Number> | |
| BesselJ1 <T extends Number> | |
| BesselK0 <T extends Number> | |
| BesselK0e <T extends Number> | |
| BesselK1 <T extends Number> | |
| BesselK1e <T extends Number> | |
| BesselY0 <T extends Number> | |
| BesselY1 <T extends Number> | |
| Bitcast <U> | Bitcasts a tensor from one type to another without copying data. |
| BlockLSTM <T extends Number> | Computes the LSTM cell forward propagation for all the time steps. |
| BlockLSTM.Options |
Optional attributes for
BlockLSTM
|
| BlockLSTMGrad <T extends Number> | Computes the LSTM cell backward propagation for the entire time sequence. |
| BlockLSTMGradV2 <T extends Number> | Computes the LSTM cell backward propagation for the entire time sequence. |
| BlockLSTMV2 <T extends Number> | Computes the LSTM cell forward propagation for all the time steps. |
| BlockLSTMV2.Options |
Optional attributes for
BlockLSTMV2
|
| BoostedTreesAggregateStats | Aggregates the summary of accumulated stats for the batch. |
| BoostedTreesBucketize | Bucketize each feature based on bucket boundaries. |
| BoostedTreesCalculateBestFeatureSplit | Calculates gains for each feature and returns the best possible split information for the feature. |
| BoostedTreesCalculateBestFeatureSplit.Options |
Optional attributes for
BoostedTreesCalculateBestFeatureSplit
|
| BoostedTreesCalculateBestFeatureSplitV2 | Calculates gains for each feature and returns the best possible split information for each node. |
| BoostedTreesCalculateBestGainsPerFeature | Calculates gains for each feature and returns the best possible split information for the feature. |
| BoostedTreesCenterBias | Calculates the prior from the training data (the bias) and fills in the first node with the logits' prior. |
| BoostedTreesCreateEnsemble | Creates a tree ensemble model and returns a handle to it. |
| BoostedTreesCreateQuantileStreamResource | Create the Resource for Quantile Streams. |
| BoostedTreesCreateQuantileStreamResource.Options |
Optional attributes for
BoostedTreesCreateQuantileStreamResource
|
| BoostedTreesDeserializeEnsemble |
Deserializes a serialized tree ensemble config and replaces current tree
ensemble. |
| BoostedTreesEnsembleResourceHandleOp | Creates a handle to a BoostedTreesEnsembleResource |
| BoostedTreesEnsembleResourceHandleOp.Options |
Optional attributes for
BoostedTreesEnsembleResourceHandleOp
|
| BoostedTreesExampleDebugOutputs | Debugging/model interpretability outputs for each example. |
| BoostedTreesFlushQuantileSummaries | Flush the quantile summaries from each quantile stream resource. |
| BoostedTreesGetEnsembleStates | Retrieves the tree ensemble resource stamp token, number of trees and growing statistics. |
| BoostedTreesMakeQuantileSummaries | Makes the summary of quantiles for the batch. |
| BoostedTreesMakeStatsSummary | Makes the summary of accumulated stats for the batch. |
| BoostedTreesPredict |
Runs multiple additive regression ensemble predictors on input instances and
computes the logits. |
| BoostedTreesQuantileStreamResourceAddSummaries | Add the quantile summaries to each quantile stream resource. |
| BoostedTreesQuantileStreamResourceDeserialize | Deserialize bucket boundaries and ready flag into current QuantileAccumulator. |
| BoostedTreesQuantileStreamResourceFlush | Flush the summaries for a quantile stream resource. |
| BoostedTreesQuantileStreamResourceFlush.Options |
Optional attributes for
BoostedTreesQuantileStreamResourceFlush
|
| BoostedTreesQuantileStreamResourceGetBucketBoundaries | Generate the bucket boundaries for each feature based on accumulated summaries. |
| BoostedTreesQuantileStreamResourceHandleOp | Creates a handle to a BoostedTreesQuantileStreamResource. |
| BoostedTreesQuantileStreamResourceHandleOp.Options |
Optional attributes for
BoostedTreesQuantileStreamResourceHandleOp
|
| BoostedTreesSerializeEnsemble | Serializes the tree ensemble to a proto. |
| BoostedTreesSparseAggregateStats | Aggregates the summary of accumulated stats for the batch. |
| BoostedTreesSparseCalculateBestFeatureSplit | Calculates gains for each feature and returns the best possible split information for the feature. |
| BoostedTreesSparseCalculateBestFeatureSplit.Options |
Optional attributes for
BoostedTreesSparseCalculateBestFeatureSplit
|
| BoostedTreesTrainingPredict |
Runs multiple additive regression ensemble predictors on input instances and
computes the update to cached logits. |
| BoostedTreesUpdateEnsemble |
Updates the tree ensemble by either adding a layer to the last tree being grown
or by starting a new tree. |
| BoostedTreesUpdateEnsembleV2 |
Updates the tree ensemble by adding a layer to the last tree being grown
or by starting a new tree. |
| BoostedTreesUpdateEnsembleV2.Options |
Optional attributes for
BoostedTreesUpdateEnsembleV2
|
| BroadcastDynamicShape <T extends Number> | Return the shape of s0 op s1 with broadcast. |
| BroadcastGradientArgs <T extends Number> | Return the reduction indices for computing gradients of s0 op s1 with broadcast. |
| BroadcastTo <T> | Broadcast an array for a compatible shape. |
| Bucketize | Bucketizes 'input' based on 'boundaries'. |
| CacheDatasetV2 | |
| CheckNumericsV2 <T extends Number> | Checks a tensor for NaN, -Inf and +Inf values. |
| ChooseFastestDataset | |
| ClipByValue <T> | Clips tensor values to a specified min and max. |
| CollectiveBcastRecvV2 <U> | Receives a tensor value broadcast from another device. |
| CollectiveBcastRecvV2.Options |
Optional attributes for
CollectiveBcastRecvV2
|
| CollectiveBcastSendV2 <T> | Broadcasts a tensor value to one or more other devices. |
| CollectiveBcastSendV2.Options |
Optional attributes for
CollectiveBcastSendV2
|
| CollectiveGather <T extends Number> | Mutually accumulates multiple tensors of identical type and shape. |
| CollectiveGather.Options |
Optional attributes for
CollectiveGather
|
| CollectiveGatherV2 <T extends Number> | Mutually accumulates multiple tensors of identical type and shape. |
| CollectiveGatherV2.Options |
Optional attributes for
CollectiveGatherV2
|
| CollectivePermute <T> | An Op to permute tensors across replicated TPU instances. |
| CollectiveReduceV2 <T extends Number> | Mutually reduces multiple tensors of identical type and shape. |
| CollectiveReduceV2.Options |
Optional attributes for
CollectiveReduceV2
|
| CombinedNonMaxSuppression |
Greedily selects a subset of bounding boxes in descending order of score,
This operation performs non_max_suppression on the inputs per batch, across all classes. |
| CombinedNonMaxSuppression.Options |
Optional attributes for
CombinedNonMaxSuppression
|
| CompressElement | Compresses a dataset element. |
| ComputeBatchSize | Computes the static batch size of a dataset sans partial batches. |
| Concat <T> | Concatenates tensors along one dimension. |
| ConfigureDistributedTPU | Sets up the centralized structures for a distributed TPU system. |
| ConfigureDistributedTPU.Options |
Optional attributes for
ConfigureDistributedTPU
|
| ConfigureTPUEmbedding | Sets up TPUEmbedding in a distributed TPU system. |
| Constant <T> | An operator producing a constant value. |
| ConsumeMutexLock | This op consumes a lock created by `MutexLock`. |
| ControlTrigger | Does nothing. |
| Copy <T> | Copy a tensor from CPU-to-CPU or GPU-to-GPU. |
| Copy.Options |
Optional attributes for
Copy
|
| CopyHost <T> | Copy a tensor to host. |
| CopyHost.Options |
Optional attributes for
CopyHost
|
| CountUpTo <T extends Number> | Increments 'ref' until it reaches 'limit'. |
| CrossReplicaSum <T extends Number> | An Op to sum inputs across replicated TPU instances. |
| CSRSparseMatrixComponents <T> | Reads out the CSR components at batch `index`. |
| CSRSparseMatrixToDense <T> | Convert a (possibly batched) CSRSparseMatrix to dense. |
| CSRSparseMatrixToSparseTensor <T> | Converts a (possibly batched) CSRSparesMatrix to a SparseTensor. |
| CSVDataset | |
| CSVDatasetV2 | |
| CTCLossV2 | Calculates the CTC Loss (log probability) for each batch entry. |
| CTCLossV2.Options |
Optional attributes for
CTCLossV2
|
| CudnnRNNBackpropV3 <T extends Number> | Backprop step of CudnnRNNV3. |
| CudnnRNNBackpropV3.Options |
Optional attributes for
CudnnRNNBackpropV3
|
| CudnnRNNCanonicalToParamsV2 <T extends Number> | Converts CudnnRNN params from canonical form to usable form. |
| CudnnRNNCanonicalToParamsV2.Options |
Optional attributes for
CudnnRNNCanonicalToParamsV2
|
| CudnnRNNParamsToCanonicalV2 <T extends Number> | Retrieves CudnnRNN params in canonical form. |
| CudnnRNNParamsToCanonicalV2.Options |
Optional attributes for
CudnnRNNParamsToCanonicalV2
|
| CudnnRNNV3 <T extends Number> | A RNN backed by cuDNN. |
| CudnnRNNV3.Options |
Optional attributes for
CudnnRNNV3
|
| CumulativeLogsumexp <T extends Number> | Compute the cumulative product of the tensor `x` along `axis`. |
| CumulativeLogsumexp.Options |
Optional attributes for
CumulativeLogsumexp
|
| DataServiceDataset | Creates a dataset that reads data from the tf.data service. |
| DataServiceDataset.Options |
Optional attributes for
DataServiceDataset
|
| DataServiceDatasetV2 | Creates a dataset that reads data from the tf.data service. |
| DataServiceDatasetV2.Options |
Optional attributes for
DataServiceDatasetV2
|
| DatasetCardinality | Returns the cardinality of `input_dataset`. |
| DatasetFromGraph | Creates a dataset from the given `graph_def`. |
| DatasetToGraphV2 | Returns a serialized GraphDef representing `input_dataset`. |
| DatasetToGraphV2.Options |
Optional attributes for
DatasetToGraphV2
|
| Dawsn <T extends Number> | |
| DebugGradientIdentity <T> | Identity op for gradient debugging. |
| DebugGradientRefIdentity <T> | Identity op for gradient debugging. |
| DebugIdentity <T> | Provides an identity mapping of the non-Ref type input tensor for debugging. |
| DebugIdentity.Options |
Optional attributes for
DebugIdentity
|
| DebugIdentityV2 <T> | Debug Identity V2 Op. |
| DebugIdentityV2.Options |
Optional attributes for
DebugIdentityV2
|
| DebugNanCount | Debug NaN Value Counter Op. |
| DebugNanCount.Options |
Optional attributes for
DebugNanCount
|
| DebugNumericSummary | Debug Numeric Summary Op. |
| DebugNumericSummary.Options |
Optional attributes for
DebugNumericSummary
|
| DebugNumericSummaryV2 <U extends Number> | Debug Numeric Summary V2 Op. |
| DebugNumericSummaryV2.Options |
Optional attributes for
DebugNumericSummaryV2
|
| DecodeImage <T extends Number> | Function for decode_bmp, decode_gif, decode_jpeg, and decode_png. |
| DecodeImage.Options |
Optional attributes for
DecodeImage
|
| DecodePaddedRaw <T extends Number> | Reinterpret the bytes of a string as a vector of numbers. |
| DecodePaddedRaw.Options |
Optional attributes for
DecodePaddedRaw
|
| DecodeProto | The op extracts fields from a serialized protocol buffers message into tensors. |
| DecodeProto.Options |
Optional attributes for
DecodeProto
|
| DeepCopy <T> | Makes a copy of `x`. |
| DeleteIterator | A container for an iterator resource. |
| DeleteMemoryCache | |
| DeleteMultiDeviceIterator | A container for an iterator resource. |
| DeleteRandomSeedGenerator | |
| DeleteSeedGenerator | |
| DeleteSessionTensor | Delete the tensor specified by its handle in the session. |
| DenseBincount <U extends Number> | Counts the number of occurrences of each value in an integer array. |
| DenseBincount.Options |
Optional attributes for
DenseBincount
|
| DenseCountSparseOutput <U extends Number> | Performs sparse-output bin counting for a tf.tensor input. |
| DenseCountSparseOutput.Options |
Optional attributes for
DenseCountSparseOutput
|
| DenseToCSRSparseMatrix | Converts a dense tensor to a (possibly batched) CSRSparseMatrix. |
| DestroyResourceOp | Deletes the resource specified by the handle. |
| DestroyResourceOp.Options |
Optional attributes for
DestroyResourceOp
|
| DestroyTemporaryVariable <T> | Destroys the temporary variable and returns its final value. |
| DeviceIndex | Return the index of device the op runs. |
| DirectedInterleaveDataset | A substitute for `InterleaveDataset` on a fixed list of `N` datasets. |
| DrawBoundingBoxesV2 <T extends Number> | Draw bounding boxes on a batch of images. |
| DummyIterationCounter | |
| DummyMemoryCache | |
| DummySeedGenerator | |
| DynamicPartition <T> | Partitions `data` into `num_partitions` tensors using indices from `partitions`. |
| DynamicStitch <T> | Interleave the values from the `data` tensors into a single tensor. |
| EditDistance | Computes the (possibly normalized) Levenshtein Edit Distance. |
| EditDistance.Options |
Optional attributes for
EditDistance
|
| Eig <U> | Computes the eigen decomposition of one or more square matrices. |
| Eig.Options |
Optional attributes for
Eig
|
| Einsum <T> | Tensor contraction according to Einstein summation convention. |
| Empty <T> | Creates a tensor with the given shape. |
| Empty.Options |
Optional attributes for
Empty
|
| EmptyTensorList | Creates and returns an empty tensor list. |
| EmptyTensorMap | Creates and returns an empty tensor map. |
| EncodeProto | The op serializes protobuf messages provided in the input tensors. |
| EncodeProto.Options |
Optional attributes for
EncodeProto
|
| EnqueueTPUEmbeddingIntegerBatch | An op that enqueues a list of input batch tensors to TPUEmbedding. |
| EnqueueTPUEmbeddingIntegerBatch.Options |
Optional attributes for
EnqueueTPUEmbeddingIntegerBatch
|
| EnqueueTPUEmbeddingRaggedTensorBatch | Eases the porting of code that uses tf.nn.embedding_lookup(). |
| EnqueueTPUEmbeddingRaggedTensorBatch.Options |
Optional attributes for
EnqueueTPUEmbeddingRaggedTensorBatch
|
| EnqueueTPUEmbeddingSparseBatch | An op that enqueues TPUEmbedding input indices from a SparseTensor. |
| EnqueueTPUEmbeddingSparseBatch.Options |
Optional attributes for
EnqueueTPUEmbeddingSparseBatch
|
| EnqueueTPUEmbeddingSparseTensorBatch | Eases the porting of code that uses tf.nn.embedding_lookup_sparse(). |
| EnqueueTPUEmbeddingSparseTensorBatch.Options |
Optional attributes for
EnqueueTPUEmbeddingSparseTensorBatch
|
| EnsureShape <T> | Ensures that the tensor's shape matches the expected shape. |
| Enter <T> | Creates or finds a child frame, and makes `data` available to the child frame. |
| Enter.Options |
Optional attributes for
Enter
|
| Erfinv <T extends Number> | |
| EuclideanNorm <T> | Computes the euclidean norm of elements across dimensions of a tensor. |
| EuclideanNorm.Options |
Optional attributes for
EuclideanNorm
|
| Exit <T> | Exits the current frame to its parent frame. |
| ExpandDims <T> | Inserts a dimension of 1 into a tensor's shape. |
| ExperimentalAutoShardDataset | Creates a dataset that shards the input dataset. |
| ExperimentalAutoShardDataset.Options |
Optional attributes for
ExperimentalAutoShardDataset
|
| ExperimentalBytesProducedStatsDataset | Records the bytes size of each element of `input_dataset` in a StatsAggregator. |
| ExperimentalChooseFastestDataset | |
| ExperimentalDatasetCardinality | Returns the cardinality of `input_dataset`. |
| ExperimentalDatasetToTFRecord | Writes the given dataset to the given file using the TFRecord format. |
| ExperimentalDenseToSparseBatchDataset | Creates a dataset that batches input elements into a SparseTensor. |
| ExperimentalLatencyStatsDataset | Records the latency of producing `input_dataset` elements in a StatsAggregator. |
| ExperimentalMatchingFilesDataset | |
| ExperimentalMaxIntraOpParallelismDataset | Creates a dataset that overrides the maximum intra-op parallelism. |
| ExperimentalParseExampleDataset | Transforms `input_dataset` containing `Example` protos as vectors of DT_STRING into a dataset of `Tensor` or `SparseTensor` objects representing the parsed features. |
| ExperimentalParseExampleDataset.Options |
Optional attributes for
ExperimentalParseExampleDataset
|
| ExperimentalPrivateThreadPoolDataset | Creates a dataset that uses a custom thread pool to compute `input_dataset`. |
| ExperimentalRandomDataset | Creates a Dataset that returns pseudorandom numbers. |
| ExperimentalRebatchDataset | Creates a dataset that changes the batch size. |
| ExperimentalRebatchDataset.Options |
Optional attributes for
ExperimentalRebatchDataset
|
| ExperimentalSetStatsAggregatorDataset | |
| ExperimentalSlidingWindowDataset | Creates a dataset that passes a sliding window over `input_dataset`. |
| ExperimentalSqlDataset | Creates a dataset that executes a SQL query and emits rows of the result set. |
| ExperimentalStatsAggregatorHandle | Creates a statistics manager resource. |
| ExperimentalStatsAggregatorHandle.Options |
Optional attributes for
ExperimentalStatsAggregatorHandle
|
| ExperimentalStatsAggregatorSummary | Produces a summary of any statistics recorded by the given statistics manager. |
| ExperimentalUnbatchDataset | A dataset that splits the elements of its input into multiple elements. |
| Expint <T extends Number> | |
| ExtractGlimpseV2 | Extracts a glimpse from the input tensor. |
| ExtractGlimpseV2.Options |
Optional attributes for
ExtractGlimpseV2
|
| ExtractVolumePatches <T extends Number> | Extract `patches` from `input` and put them in the `"depth"` output dimension. |
| Fill <U> | Creates a tensor filled with a scalar value. |
| FinalizeDataset | Creates a dataset by applying `tf.data.Options` to `input_dataset`. |
| FinalizeDataset.Options |
Optional attributes for
FinalizeDataset
|
| Fingerprint | Generates fingerprint values. |
| FresnelCos <T extends Number> | |
| FresnelSin <T extends Number> | |
| FusedBatchNormGradV3 <T extends Number, U extends Number> | Gradient for batch normalization. |
| FusedBatchNormGradV3.Options |
Optional attributes for
FusedBatchNormGradV3
|
| FusedBatchNormV3 <T extends Number, U extends Number> | Batch normalization. |
| FusedBatchNormV3.Options |
Optional attributes for
FusedBatchNormV3
|
| Gather <T> | Gather slices from `params` axis `axis` according to `indices`. |
| Gather.Options |
Optional attributes for
Gather
|
| GatherNd <T> | Gather slices from `params` into a Tensor with shape specified by `indices`. |
| GenerateBoundingBoxProposals |
This op produces Region of Interests from given bounding boxes(bbox_deltas) encoded wrt anchors according to eq.2 in arXiv:1506.01497
The op selects top `pre_nms_topn` scoring boxes, decodes them with respect to anchors, applies non-maximal suppression on overlapping boxes with higher than `nms_threshold` intersection-over-union (iou) value, discarding boxes where shorter side is less than `min_size`. |
| GenerateBoundingBoxProposals.Options |
Optional attributes for
GenerateBoundingBoxProposals
|
| GetOptions | Returns the `tf.data.Options` attached to `input_dataset`. |
| GetSessionHandle | Store the input tensor in the state of the current session. |
| GetSessionTensor <T> | Get the value of the tensor specified by its handle. |
| Gradients |
Adds operations to compute the partial derivatives of sum of
y
s w.r.t
x
s,
i.e.,
d(y_1 + y_2 + ...)/dx_1, d(y_1 + y_2 + ...)/dx_2...
If
|
| Gradients.Options |
Optional attributes for
Gradients
|
| GRUBlockCell <T extends Number> | Computes the GRU cell forward propagation for 1 time step. |
| GRUBlockCellGrad <T extends Number> | Computes the GRU cell back-propagation for 1 time step. |
| GuaranteeConst <T> | Gives a guarantee to the TF runtime that the input tensor is a constant. |
| HashTable | Creates a non-initialized hash table. |
| HashTable.Options |
Optional attributes for
HashTable
|
| HistogramFixedWidth <U extends Number> | Return histogram of values. |
| Identity <T> | Return a tensor with the same shape and contents as the input tensor or value. |
| IdentityN |
Returns a list of tensors with the same shapes and contents as the input
tensors. |
| IgnoreErrorsDataset | Creates a dataset that contains the elements of `input_dataset` ignoring errors. |
| IgnoreErrorsDataset.Options |
Optional attributes for
IgnoreErrorsDataset
|
| ImageProjectiveTransformV2 <T extends Number> | Applies the given transform to each of the images. |
| ImageProjectiveTransformV2.Options |
Optional attributes for
ImageProjectiveTransformV2
|
| ImageProjectiveTransformV3 <T extends Number> | Applies the given transform to each of the images. |
| ImageProjectiveTransformV3.Options |
Optional attributes for
ImageProjectiveTransformV3
|
| ImmutableConst <T> | Returns immutable tensor from memory region. |
| InfeedDequeue <T> | A placeholder op for a value that will be fed into the computation. |
| InfeedDequeueTuple | Fetches multiple values from infeed as an XLA tuple. |
| InfeedEnqueue | An op which feeds a single Tensor value into the computation. |
| InfeedEnqueue.Options |
Optional attributes for
InfeedEnqueue
|
| InfeedEnqueuePrelinearizedBuffer | An op which enqueues prelinearized buffer into TPU infeed. |
| InfeedEnqueuePrelinearizedBuffer.Options |
Optional attributes for
InfeedEnqueuePrelinearizedBuffer
|
| InfeedEnqueueTuple | Feeds multiple Tensor values into the computation as an XLA tuple. |
| InfeedEnqueueTuple.Options |
Optional attributes for
InfeedEnqueueTuple
|
| InitializeTable | Table initializer that takes two tensors for keys and values respectively. |
| InitializeTableFromDataset | |
| InitializeTableFromTextFile | Initializes a table from a text file. |
| InitializeTableFromTextFile.Options |
Optional attributes for
InitializeTableFromTextFile
|
| InplaceAdd <T> | Adds v into specified rows of x. |
| InplaceSub <T> | Subtracts `v` into specified rows of `x`. |
| InplaceUpdate <T> | Updates specified rows 'i' with values 'v'. |
| IsBoostedTreesEnsembleInitialized | Checks whether a tree ensemble has been initialized. |
| IsBoostedTreesQuantileStreamResourceInitialized | Checks whether a quantile stream has been initialized. |
| IsotonicRegression <U extends Number> | Solves a batch of isotonic regression problems. |
| IsVariableInitialized | Checks whether a tensor has been initialized. |
| IteratorGetDevice | Returns the name of the device on which `resource` has been placed. |
| KMC2ChainInitialization | Returns the index of a data point that should be added to the seed set. |
| KmeansPlusPlusInitialization | Selects num_to_sample rows of input using the KMeans++ criterion. |
| KthOrderStatistic | Computes the Kth order statistic of a data set. |
| LinSpace <T extends Number> | Generates values in an interval. |
| LMDBDataset | Creates a dataset that emits the key-value pairs in one or more LMDB files. |
| LoadTPUEmbeddingAdadeltaParameters | Load Adadelta embedding parameters. |
| LoadTPUEmbeddingAdadeltaParameters.Options |
Optional attributes for
LoadTPUEmbeddingAdadeltaParameters
|
| LoadTPUEmbeddingAdadeltaParametersGradAccumDebug | Load Adadelta parameters with debug support. |
| LoadTPUEmbeddingAdadeltaParametersGradAccumDebug.Options |
Optional attributes for
LoadTPUEmbeddingAdadeltaParametersGradAccumDebug
|
| LoadTPUEmbeddingAdagradParameters | Load Adagrad embedding parameters. |
| LoadTPUEmbeddingAdagradParameters.Options |
Optional attributes for
LoadTPUEmbeddingAdagradParameters
|
| LoadTPUEmbeddingAdagradParametersGradAccumDebug | Load Adagrad embedding parameters with debug support. |
| LoadTPUEmbeddingAdagradParametersGradAccumDebug.Options |
Optional attributes for
LoadTPUEmbeddingAdagradParametersGradAccumDebug
|
| LoadTPUEmbeddingADAMParameters | Load ADAM embedding parameters. |
| LoadTPUEmbeddingADAMParameters.Options |
Optional attributes for
LoadTPUEmbeddingADAMParameters
|
| LoadTPUEmbeddingADAMParametersGradAccumDebug | Load ADAM embedding parameters with debug support. |
| LoadTPUEmbeddingADAMParametersGradAccumDebug.Options |
Optional attributes for
LoadTPUEmbeddingADAMParametersGradAccumDebug
|
| LoadTPUEmbeddingCenteredRMSPropParameters | Load centered RMSProp embedding parameters. |
| LoadTPUEmbeddingCenteredRMSPropParameters.Options |
Optional attributes for
LoadTPUEmbeddingCenteredRMSPropParameters
|
| LoadTPUEmbeddingFrequencyEstimatorParameters | Load frequency estimator embedding parameters. |
| LoadTPUEmbeddingFrequencyEstimatorParameters.Options |
Optional attributes for
LoadTPUEmbeddingFrequencyEstimatorParameters
|
| LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug | Load frequency estimator embedding parameters with debug support. |
| LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug.Options |
Optional attributes for
LoadTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug
|
| LoadTPUEmbeddingFTRLParameters | Load FTRL embedding parameters. |
| LoadTPUEmbeddingFTRLParameters.Options |
Optional attributes for
LoadTPUEmbeddingFTRLParameters
|
| LoadTPUEmbeddingFTRLParametersGradAccumDebug | Load FTRL embedding parameters with debug support. |
| LoadTPUEmbeddingFTRLParametersGradAccumDebug.Options |
Optional attributes for
LoadTPUEmbeddingFTRLParametersGradAccumDebug
|
| LoadTPUEmbeddingMDLAdagradLightParameters | Load MDL Adagrad Light embedding parameters. |
| LoadTPUEmbeddingMDLAdagradLightParameters.Options |
Optional attributes for
LoadTPUEmbeddingMDLAdagradLightParameters
|
| LoadTPUEmbeddingMomentumParameters | Load Momentum embedding parameters. |
| LoadTPUEmbeddingMomentumParameters.Options |
Optional attributes for
LoadTPUEmbeddingMomentumParameters
|
| LoadTPUEmbeddingMomentumParametersGradAccumDebug | Load Momentum embedding parameters with debug support. |
| LoadTPUEmbeddingMomentumParametersGradAccumDebug.Options |
Optional attributes for
LoadTPUEmbeddingMomentumParametersGradAccumDebug
|
| LoadTPUEmbeddingProximalAdagradParameters | Load proximal Adagrad embedding parameters. |
| LoadTPUEmbeddingProximalAdagradParameters.Options |
Optional attributes for
LoadTPUEmbeddingProximalAdagradParameters
|
| LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug | Load proximal Adagrad embedding parameters with debug support. |
| LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug.Options |
Optional attributes for
LoadTPUEmbeddingProximalAdagradParametersGradAccumDebug
|
| LoadTPUEmbeddingProximalYogiParameters | |
| LoadTPUEmbeddingProximalYogiParameters.Options |
Optional attributes for
LoadTPUEmbeddingProximalYogiParameters
|
| LoadTPUEmbeddingProximalYogiParametersGradAccumDebug | |
| LoadTPUEmbeddingProximalYogiParametersGradAccumDebug.Options |
Optional attributes for
LoadTPUEmbeddingProximalYogiParametersGradAccumDebug
|
| LoadTPUEmbeddingRMSPropParameters | Load RMSProp embedding parameters. |
| LoadTPUEmbeddingRMSPropParameters.Options |
Optional attributes for
LoadTPUEmbeddingRMSPropParameters
|
| LoadTPUEmbeddingRMSPropParametersGradAccumDebug | Load RMSProp embedding parameters with debug support. |
| LoadTPUEmbeddingRMSPropParametersGradAccumDebug.Options |
Optional attributes for
LoadTPUEmbeddingRMSPropParametersGradAccumDebug
|
| LoadTPUEmbeddingStochasticGradientDescentParameters | Load SGD embedding parameters. |
| LoadTPUEmbeddingStochasticGradientDescentParameters.Options |
Optional attributes for
LoadTPUEmbeddingStochasticGradientDescentParameters
|
| LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug | Load SGD embedding parameters. |
| LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug.Options |
Optional attributes for
LoadTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug
|
| LookupTableExport <T, U> | Outputs all keys and values in the table. |
| LookupTableFind <U> | Looks up keys in a table, outputs the corresponding values. |
| LookupTableImport | Replaces the contents of the table with the specified keys and values. |
| LookupTableInsert | Updates the table to associates keys with values. |
| LookupTableRemove | Removes keys and its associated values from a table. |
| LookupTableSize | Computes the number of elements in the given table. |
| LoopCond | Forwards the input to the output. |
| LowerBound <U extends Number> | Applies lower_bound(sorted_search_values, values) along each row. |
| LSTMBlockCell <T extends Number> | Computes the LSTM cell forward propagation for 1 time step. |
| LSTMBlockCell.Options |
Optional attributes for
LSTMBlockCell
|
| LSTMBlockCellGrad <T extends Number> | Computes the LSTM cell backward propagation for 1 timestep. |
| Lu <T, U extends Number> | Computes the LU decomposition of one or more square matrices. |
| MakeUnique |
Make all elements in the non-Batch dimension unique, but \"close\" to
their initial value. |
| MapClear | Op removes all elements in the underlying container. |
| MapClear.Options |
Optional attributes for
MapClear
|
| MapIncompleteSize | Op returns the number of incomplete elements in the underlying container. |
| MapIncompleteSize.Options |
Optional attributes for
MapIncompleteSize
|
| MapPeek | Op peeks at the values at the specified key. |
| MapPeek.Options |
Optional attributes for
MapPeek
|
| MapSize | Op returns the number of elements in the underlying container. |
| MapSize.Options |
Optional attributes for
MapSize
|
| MapStage | Stage (key, values) in the underlying container which behaves like a hashtable. |
| MapStage.Options |
Optional attributes for
MapStage
|
| MapUnstage |
Op removes and returns the values associated with the key
from the underlying container. |
| MapUnstage.Options |
Optional attributes for
MapUnstage
|
| MapUnstageNoKey |
Op removes and returns a random (key, value)
from the underlying container. |
| MapUnstageNoKey.Options |
Optional attributes for
MapUnstageNoKey
|
| MatrixDiagPartV2 <T> | Returns the batched diagonal part of a batched tensor. |
| MatrixDiagPartV3 <T> | Returns the batched diagonal part of a batched tensor. |
| MatrixDiagPartV3.Options |
Optional attributes for
MatrixDiagPartV3
|
| MatrixDiagV2 <T> | Returns a batched diagonal tensor with given batched diagonal values. |
| MatrixDiagV3 <T> | Returns a batched diagonal tensor with given batched diagonal values. |
| MatrixDiagV3.Options |
Optional attributes for
MatrixDiagV3
|
| MatrixSetDiagV2 <T> | Returns a batched matrix tensor with new batched diagonal values. |
| MatrixSetDiagV3 <T> | Returns a batched matrix tensor with new batched diagonal values. |
| MatrixSetDiagV3.Options |
Optional attributes for
MatrixSetDiagV3
|
| Max <T> | Computes the maximum of elements across dimensions of a tensor. |
| Max.Options |
Optional attributes for
Max
|
| MaxIntraOpParallelismDataset | Creates a dataset that overrides the maximum intra-op parallelism. |
| Merge <T> | Forwards the value of an available tensor from `inputs` to `output`. |
| Min <T> | Computes the minimum of elements across dimensions of a tensor. |
| Min.Options |
Optional attributes for
Min
|
| MirrorPad <T> | Pads a tensor with mirrored values. |
| MirrorPadGrad <T> | Gradient op for `MirrorPad` op. |
| MlirPassthroughOp | Wraps an arbitrary MLIR computation expressed as a module with a main() function. |
| MulNoNan <T> | Returns x * y element-wise. |
| MutableDenseHashTable | Creates an empty hash table that uses tensors as the backing store. |
| MutableDenseHashTable.Options |
Optional attributes for
MutableDenseHashTable
|
| MutableHashTable | Creates an empty hash table. |
| MutableHashTable.Options |
Optional attributes for
MutableHashTable
|
| MutableHashTableOfTensors | Creates an empty hash table. |
| MutableHashTableOfTensors.Options |
Optional attributes for
MutableHashTableOfTensors
|
| Mutex | Creates a Mutex resource that can be locked by `MutexLock`. |
| Mutex.Options |
Optional attributes for
Mutex
|
| MutexLock | Locks a mutex resource. |
| NcclAllReduce <T extends Number> | Outputs a tensor containing the reduction across all input tensors. |
| NcclBroadcast <T extends Number> | Sends `input` to all devices that are connected to the output. |
| NcclReduce <T extends Number> | Reduces `input` from `num_devices` using `reduction` to a single device. |
| Ndtri <T extends Number> | |
| NearestNeighbors | Selects the k nearest centers for each point. |
| NextAfter <T extends Number> | Returns the next representable value of `x1` in the direction of `x2`, element-wise. |
| NextIteration <T> | Makes its input available to the next iteration. |
| NonDeterministicInts <U> | Non-deterministically generates some integers. |
| NonMaxSuppressionV5 <T extends Number> |
Greedily selects a subset of bounding boxes in descending order of score,
pruning away boxes that have high intersection-over-union (IOU) overlap with previously selected boxes. |
| NonMaxSuppressionV5.Options |
Optional attributes for
NonMaxSuppressionV5
|
| NonSerializableDataset | |
| NoOp | Does nothing. |
| OneHot <U> | Returns a one-hot tensor. |
| OneHot.Options |
Optional attributes for
OneHot
|
| OnesLike <T> | Returns a tensor of ones with the same shape and type as x. |
| OptimizeDatasetV2 | Creates a dataset by applying related optimizations to `input_dataset`. |
| OptimizeDatasetV2.Options |
Optional attributes for
OptimizeDatasetV2
|
| OptionsDataset | Creates a dataset by attaching tf.data.Options to `input_dataset`. |
| OrderedMapClear | Op removes all elements in the underlying container. |
| OrderedMapClear.Options |
Optional attributes for
OrderedMapClear
|
| OrderedMapIncompleteSize | Op returns the number of incomplete elements in the underlying container. |
| OrderedMapIncompleteSize.Options |
Optional attributes for
OrderedMapIncompleteSize
|
| OrderedMapPeek | Op peeks at the values at the specified key. |
| OrderedMapPeek.Options |
Optional attributes for
OrderedMapPeek
|
| OrderedMapSize | Op returns the number of elements in the underlying container. |
| OrderedMapSize.Options |
Optional attributes for
OrderedMapSize
|
| OrderedMapStage |
Stage (key, values) in the underlying container which behaves like a ordered
associative container. |
| OrderedMapStage.Options |
Optional attributes for
OrderedMapStage
|
| OrderedMapUnstage |
Op removes and returns the values associated with the key
from the underlying container. |
| OrderedMapUnstage.Options |
Optional attributes for
OrderedMapUnstage
|
| OrderedMapUnstageNoKey |
Op removes and returns the (key, value) element with the smallest
key from the underlying container. |
| OrderedMapUnstageNoKey.Options |
Optional attributes for
OrderedMapUnstageNoKey
|
| OutfeedDequeue <T> | Retrieves a single tensor from the computation outfeed. |
| OutfeedDequeue.Options |
Optional attributes for
OutfeedDequeue
|
| OutfeedDequeueTuple | Retrieve multiple values from the computation outfeed. |
| OutfeedDequeueTuple.Options |
Optional attributes for
OutfeedDequeueTuple
|
| OutfeedDequeueTupleV2 | Retrieve multiple values from the computation outfeed. |
| OutfeedDequeueV2 <T> | Retrieves a single tensor from the computation outfeed. |
| OutfeedEnqueue | Enqueue a Tensor on the computation outfeed. |
| OutfeedEnqueueTuple | Enqueue multiple Tensor values on the computation outfeed. |
| Pad <T> | Pads a tensor. |
| ParallelBatchDataset | |
| ParallelBatchDataset.Options |
Optional attributes for
ParallelBatchDataset
|
| ParallelConcat <T> | Concatenates a list of `N` tensors along the first dimension. |
| ParallelDynamicStitch <T> | Interleave the values from the `data` tensors into a single tensor. |
| ParseExampleDatasetV2 | Transforms `input_dataset` containing `Example` protos as vectors of DT_STRING into a dataset of `Tensor` or `SparseTensor` objects representing the parsed features. |
| ParseExampleDatasetV2.Options |
Optional attributes for
ParseExampleDatasetV2
|
| ParseExampleV2 | Transforms a vector of tf.Example protos (as strings) into typed tensors. |
| ParseSequenceExampleV2 | Transforms a vector of tf.io.SequenceExample protos (as strings) into typed tensors. |
| ParseSequenceExampleV2.Options |
Optional attributes for
ParseSequenceExampleV2
|
| Placeholder <T> | A placeholder op for a value that will be fed into the computation. |
| Placeholder.Options |
Optional attributes for
Placeholder
|
| PlaceholderWithDefault <T> | A placeholder op that passes through `input` when its output is not fed. |
| Prelinearize | An op which linearizes one Tensor value to an opaque variant tensor. |
| Prelinearize.Options |
Optional attributes for
Prelinearize
|
| PrelinearizeTuple | An op which linearizes multiple Tensor values to an opaque variant tensor. |
| PrelinearizeTuple.Options |
Optional attributes for
PrelinearizeTuple
|
| Prints a string scalar. | |
| Print.Options |
Optional attributes for
Print
|
| PrivateThreadPoolDataset | Creates a dataset that uses a custom thread pool to compute `input_dataset`. |
| Prod <T> | Computes the product of elements across dimensions of a tensor. |
| Prod.Options |
Optional attributes for
Prod
|
| QuantizeAndDequantizeV4 <T extends Number> | Returns the gradient of `QuantizeAndDequantizeV4`. |
| QuantizeAndDequantizeV4.Options |
Optional attributes for
QuantizeAndDequantizeV4
|
| QuantizeAndDequantizeV4Grad <T extends Number> | Returns the gradient of `QuantizeAndDequantizeV4`. |
| QuantizeAndDequantizeV4Grad.Options |
Optional attributes for
QuantizeAndDequantizeV4Grad
|
| QuantizedConcat <T> | Concatenates quantized tensors along one dimension. |
| QuantizedConcatV2 <T> | |
| QuantizedConv2DAndRelu <V> | |
| QuantizedConv2DAndRelu.Options |
Optional attributes for
QuantizedConv2DAndRelu
|
| QuantizedConv2DAndReluAndRequantize <V> | |
| QuantizedConv2DAndReluAndRequantize.Options |
Optional attributes for
QuantizedConv2DAndReluAndRequantize
|
| QuantizedConv2DAndRequantize <V> | |
| QuantizedConv2DAndRequantize.Options |
Optional attributes for
QuantizedConv2DAndRequantize
|
| QuantizedConv2DPerChannel <V> | Computes QuantizedConv2D per channel. |
| QuantizedConv2DPerChannel.Options |
Optional attributes for
QuantizedConv2DPerChannel
|
| QuantizedConv2DWithBias <V> | |
| QuantizedConv2DWithBias.Options |
Optional attributes for
QuantizedConv2DWithBias
|
| QuantizedConv2DWithBiasAndRelu <V> | |
| QuantizedConv2DWithBiasAndRelu.Options |
Optional attributes for
QuantizedConv2DWithBiasAndRelu
|
| QuantizedConv2DWithBiasAndReluAndRequantize <W> | |
| QuantizedConv2DWithBiasAndReluAndRequantize.Options |
Optional attributes for
QuantizedConv2DWithBiasAndReluAndRequantize
|
| QuantizedConv2DWithBiasAndRequantize <W> | |
| QuantizedConv2DWithBiasAndRequantize.Options |
Optional attributes for
QuantizedConv2DWithBiasAndRequantize
|
| QuantizedConv2DWithBiasSignedSumAndReluAndRequantize <X> | |
| QuantizedConv2DWithBiasSignedSumAndReluAndRequantize.Options |
Optional attributes for
QuantizedConv2DWithBiasSignedSumAndReluAndRequantize
|
| QuantizedConv2DWithBiasSumAndRelu <V> | |
| QuantizedConv2DWithBiasSumAndRelu.Options |
Optional attributes for
QuantizedConv2DWithBiasSumAndRelu
|
| QuantizedConv2DWithBiasSumAndReluAndRequantize <X> | |
| QuantizedConv2DWithBiasSumAndReluAndRequantize.Options |
Optional attributes for
QuantizedConv2DWithBiasSumAndReluAndRequantize
|
| QuantizedDepthwiseConv2D <V> | Computes quantized depthwise Conv2D. |
| QuantizedDepthwiseConv2D.Options |
Optional attributes for
QuantizedDepthwiseConv2D
|
| QuantizedDepthwiseConv2DWithBias <V> | Computes quantized depthwise Conv2D with Bias. |
| QuantizedDepthwiseConv2DWithBias.Options |
Optional attributes for
QuantizedDepthwiseConv2DWithBias
|
| QuantizedDepthwiseConv2DWithBiasAndRelu <V> | Computes quantized depthwise Conv2D with Bias and Relu. |
| QuantizedDepthwiseConv2DWithBiasAndRelu.Options |
Optional attributes for
QuantizedDepthwiseConv2DWithBiasAndRelu
|
| QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize <W> | Computes quantized depthwise Conv2D with Bias, Relu and Requantize. |
| QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize.Options |
Optional attributes for
QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize
|
| QuantizedMatMulWithBias <W> | Performs a quantized matrix multiplication of `a` by the matrix `b` with bias add. |
| QuantizedMatMulWithBias.Options |
Optional attributes for
QuantizedMatMulWithBias
|
| QuantizedMatMulWithBiasAndDequantize <W extends Number> | |
| QuantizedMatMulWithBiasAndDequantize.Options |
Optional attributes for
QuantizedMatMulWithBiasAndDequantize
|
| QuantizedMatMulWithBiasAndRelu <V> | Perform a quantized matrix multiplication of `a` by the matrix `b` with bias add and relu fusion. |
| QuantizedMatMulWithBiasAndRelu.Options |
Optional attributes for
QuantizedMatMulWithBiasAndRelu
|
| QuantizedMatMulWithBiasAndReluAndRequantize <W> | Perform a quantized matrix multiplication of `a` by the matrix `b` with bias add and relu and requantize fusion. |
| QuantizedMatMulWithBiasAndReluAndRequantize.Options |
Optional attributes for
QuantizedMatMulWithBiasAndReluAndRequantize
|
| QuantizedMatMulWithBiasAndRequantize <W> | |
| QuantizedMatMulWithBiasAndRequantize.Options |
Optional attributes for
QuantizedMatMulWithBiasAndRequantize
|
| QuantizedReshape <T> | Reshapes a quantized tensor as per the Reshape op. |
| RaggedBincount <U extends Number> | Counts the number of occurrences of each value in an integer array. |
| RaggedBincount.Options |
Optional attributes for
RaggedBincount
|
| RaggedCountSparseOutput <U extends Number> | Performs sparse-output bin counting for a ragged tensor input. |
| RaggedCountSparseOutput.Options |
Optional attributes for
RaggedCountSparseOutput
|
| RaggedCross <T, U extends Number> | Generates a feature cross from a list of tensors, and returns it as a RaggedTensor. |
| RaggedGather <T extends Number, U> | Gather ragged slices from `params` axis `0` according to `indices`. |
| RaggedRange <U extends Number, T extends Number> | Returns a `RaggedTensor` containing the specified sequences of numbers. |
| RaggedTensorFromVariant <U extends Number, T> | Decodes a `variant` Tensor into a `RaggedTensor`. |
| RaggedTensorToSparse <U> | Converts a `RaggedTensor` into a `SparseTensor` with the same values. |
| RaggedTensorToTensor <U> | Create a dense tensor from a ragged tensor, possibly altering its shape. |
| RaggedTensorToVariant | Encodes a `RaggedTensor` into a `variant` Tensor. |
| RaggedTensorToVariantGradient <U> | Helper used to compute the gradient for `RaggedTensorToVariant`. |
| Range <T extends Number> | Creates a sequence of numbers. |
| Rank | Returns the rank of a tensor. |
| ReadVariableOp <T> | Reads the value of a variable. |
| RebatchDataset | Creates a dataset that changes the batch size. |
| RebatchDataset.Options |
Optional attributes for
RebatchDataset
|
| RebatchDatasetV2 | Creates a dataset that changes the batch size. |
| Recv <T> | Receives the named tensor from send_device on recv_device. |
| Recv.Options |
Optional attributes for
Recv
|
| RecvTPUEmbeddingActivations | An op that receives embedding activations on the TPU. |
| ReduceAll | Computes the "logical and" of elements across dimensions of a tensor. |
| ReduceAll.Options |
Optional attributes for
ReduceAll
|
| ReduceAny | Computes the "logical or" of elements across dimensions of a tensor. |
| ReduceAny.Options |
Optional attributes for
ReduceAny
|
| ReduceMax <T> | Computes the maximum of elements across dimensions of a tensor. |
| ReduceMax.Options |
Optional attributes for
ReduceMax
|
| ReduceMin <T> | Computes the minimum of elements across dimensions of a tensor. |
| ReduceMin.Options |
Optional attributes for
ReduceMin
|
| ReduceProd <T> | Computes the product of elements across dimensions of a tensor. |
| ReduceProd.Options |
Optional attributes for
ReduceProd
|
| ReduceSum <T> | Computes the sum of elements across dimensions of a tensor. |
| ReduceSum.Options |
Optional attributes for
ReduceSum
|
| RefEnter <T> | Creates or finds a child frame, and makes `data` available to the child frame. |
| RefEnter.Options |
Optional attributes for
RefEnter
|
| RefExit <T> | Exits the current frame to its parent frame. |
| RefIdentity <T> | Return the same ref tensor as the input ref tensor. |
| RefMerge <T> | Forwards the value of an available tensor from `inputs` to `output`. |
| RefNextIteration <T> | Makes its input available to the next iteration. |
| RefSelect <T> | Forwards the `index`th element of `inputs` to `output`. |
| RefSwitch <T> | Forwards the ref tensor `data` to the output port determined by `pred`. |
| RegisterDataset | Registers a dataset with the tf.data service. |
| RequantizationRangePerChannel | Computes requantization range per channel. |
| RequantizePerChannel <U> | Requantizes input with min and max values known per channel. |
| Reshape <T> | Reshapes a tensor. |
| ResourceAccumulatorApplyGradient | Applies a gradient to a given accumulator. |
| ResourceAccumulatorNumAccumulated | Returns the number of gradients aggregated in the given accumulators. |
| ResourceAccumulatorSetGlobalStep | Updates the accumulator with a new value for global_step. |
| ResourceAccumulatorTakeGradient <T> | Extracts the average gradient in the given ConditionalAccumulator. |
| ResourceApplyAdagradV2 | Update '*var' according to the adagrad scheme. |
| ResourceApplyAdagradV2.Options |
Optional attributes for
ResourceApplyAdagradV2
|
| ResourceApplyAdamWithAmsgrad | Update '*var' according to the Adam algorithm. |
| ResourceApplyAdamWithAmsgrad.Options |
Optional attributes for
ResourceApplyAdamWithAmsgrad
|
| ResourceApplyKerasMomentum | Update '*var' according to the momentum scheme. |
| ResourceApplyKerasMomentum.Options |
Optional attributes for
ResourceApplyKerasMomentum
|
| ResourceConditionalAccumulator | A conditional accumulator for aggregating gradients. |
| ResourceConditionalAccumulator.Options |
Optional attributes for
ResourceConditionalAccumulator
|
| ResourceCountUpTo <T extends Number> | Increments variable pointed to by 'resource' until it reaches 'limit'. |
| ResourceGather <U> | Gather slices from the variable pointed to by `resource` according to `indices`. |
| ResourceGather.Options |
Optional attributes for
ResourceGather
|
| ResourceGatherNd <U> | |
| ResourceScatterAdd | Adds sparse updates to the variable referenced by `resource`. |
| ResourceScatterDiv | Divides sparse updates into the variable referenced by `resource`. |
| ResourceScatterMax | Reduces sparse updates into the variable referenced by `resource` using the `max` operation. |
| ResourceScatterMin | Reduces sparse updates into the variable referenced by `resource` using the `min` operation. |
| ResourceScatterMul | Multiplies sparse updates into the variable referenced by `resource`. |
| ResourceScatterNdAdd | Applies sparse addition to individual values or slices in a Variable. |
| ResourceScatterNdAdd.Options |
Optional attributes for
ResourceScatterNdAdd
|
| ResourceScatterNdMax | |
| ResourceScatterNdMax.Options |
Optional attributes for
ResourceScatterNdMax
|
| ResourceScatterNdMin | |
| ResourceScatterNdMin.Options |
Optional attributes for
ResourceScatterNdMin
|
| ResourceScatterNdSub | Applies sparse subtraction to individual values or slices in a Variable. |
| ResourceScatterNdSub.Options |
Optional attributes for
ResourceScatterNdSub
|
| ResourceScatterNdUpdate |
Applies sparse `updates` to individual values or slices within a given
variable according to `indices`. |
| ResourceScatterNdUpdate.Options |
Optional attributes for
ResourceScatterNdUpdate
|
| ResourceScatterSub | Subtracts sparse updates from the variable referenced by `resource`. |
| ResourceScatterUpdate | Assigns sparse updates to the variable referenced by `resource`. |
| ResourceSparseApplyAdagradV2 | Update relevant entries in '*var' and '*accum' according to the adagrad scheme. |
| ResourceSparseApplyAdagradV2.Options |
Optional attributes for
ResourceSparseApplyAdagradV2
|
| ResourceSparseApplyKerasMomentum | Update relevant entries in '*var' and '*accum' according to the momentum scheme. |
| ResourceSparseApplyKerasMomentum.Options |
Optional attributes for
ResourceSparseApplyKerasMomentum
|
| ResourceStridedSliceAssign | Assign `value` to the sliced l-value reference of `ref`. |
| ResourceStridedSliceAssign.Options |
Optional attributes for
ResourceStridedSliceAssign
|
| RetrieveTPUEmbeddingAdadeltaParameters | Retrieve Adadelta embedding parameters. |
| RetrieveTPUEmbeddingAdadeltaParameters.Options |
Optional attributes for
RetrieveTPUEmbeddingAdadeltaParameters
|
| RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug | Retrieve Adadelta embedding parameters with debug support. |
| RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug.Options |
Optional attributes for
RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug
|
| RetrieveTPUEmbeddingAdagradParameters | Retrieve Adagrad embedding parameters. |
| RetrieveTPUEmbeddingAdagradParameters.Options |
Optional attributes for
RetrieveTPUEmbeddingAdagradParameters
|
| RetrieveTPUEmbeddingAdagradParametersGradAccumDebug | Retrieve Adagrad embedding parameters with debug support. |
| RetrieveTPUEmbeddingAdagradParametersGradAccumDebug.Options |
Optional attributes for
RetrieveTPUEmbeddingAdagradParametersGradAccumDebug
|
| RetrieveTPUEmbeddingADAMParameters | Retrieve ADAM embedding parameters. |
| RetrieveTPUEmbeddingADAMParameters.Options |
Optional attributes for
RetrieveTPUEmbeddingADAMParameters
|
| RetrieveTPUEmbeddingADAMParametersGradAccumDebug | Retrieve ADAM embedding parameters with debug support. |
| RetrieveTPUEmbeddingADAMParametersGradAccumDebug.Options |
Optional attributes for
RetrieveTPUEmbeddingADAMParametersGradAccumDebug
|
| RetrieveTPUEmbeddingCenteredRMSPropParameters | Retrieve centered RMSProp embedding parameters. |
| RetrieveTPUEmbeddingCenteredRMSPropParameters.Options |
Optional attributes for
RetrieveTPUEmbeddingCenteredRMSPropParameters
|
| RetrieveTPUEmbeddingFrequencyEstimatorParameters | Retrieve frequency estimator embedding parameters. |
| RetrieveTPUEmbeddingFrequencyEstimatorParameters.Options |
Optional attributes for
RetrieveTPUEmbeddingFrequencyEstimatorParameters
|
| RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug | Retrieve frequency estimator embedding parameters with debug support. |
| RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug.Options |
Optional attributes for
RetrieveTPUEmbeddingFrequencyEstimatorParametersGradAccumDebug
|
| RetrieveTPUEmbeddingFTRLParameters | Retrieve FTRL embedding parameters. |
| RetrieveTPUEmbeddingFTRLParameters.Options |
Optional attributes for
RetrieveTPUEmbeddingFTRLParameters
|
| RetrieveTPUEmbeddingFTRLParametersGradAccumDebug | Retrieve FTRL embedding parameters with debug support. |
| RetrieveTPUEmbeddingFTRLParametersGradAccumDebug.Options |
Optional attributes for
RetrieveTPUEmbeddingFTRLParametersGradAccumDebug
|
| RetrieveTPUEmbeddingMDLAdagradLightParameters | Retrieve MDL Adagrad Light embedding parameters. |
| RetrieveTPUEmbeddingMDLAdagradLightParameters.Options |
Optional attributes for
RetrieveTPUEmbeddingMDLAdagradLightParameters
|
| RetrieveTPUEmbeddingMomentumParameters | Retrieve Momentum embedding parameters. |
| RetrieveTPUEmbeddingMomentumParameters.Options |
Optional attributes for
RetrieveTPUEmbeddingMomentumParameters
|
| RetrieveTPUEmbeddingMomentumParametersGradAccumDebug | Retrieve Momentum embedding parameters with debug support. |
| RetrieveTPUEmbeddingMomentumParametersGradAccumDebug.Options |
Optional attributes for
RetrieveTPUEmbeddingMomentumParametersGradAccumDebug
|
| RetrieveTPUEmbeddingProximalAdagradParameters | Retrieve proximal Adagrad embedding parameters. |
| RetrieveTPUEmbeddingProximalAdagradParameters.Options |
Optional attributes for
RetrieveTPUEmbeddingProximalAdagradParameters
|
| RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug | Retrieve proximal Adagrad embedding parameters with debug support. |
| RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug.Options |
Optional attributes for
RetrieveTPUEmbeddingProximalAdagradParametersGradAccumDebug
|
| RetrieveTPUEmbeddingProximalYogiParameters | |
| RetrieveTPUEmbeddingProximalYogiParameters.Options |
Optional attributes for
RetrieveTPUEmbeddingProximalYogiParameters
|
| RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug | |
| RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug.Options |
Optional attributes for
RetrieveTPUEmbeddingProximalYogiParametersGradAccumDebug
|
| RetrieveTPUEmbeddingRMSPropParameters | Retrieve RMSProp embedding parameters. |
| RetrieveTPUEmbeddingRMSPropParameters.Options |
Optional attributes for
RetrieveTPUEmbeddingRMSPropParameters
|
| RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug | Retrieve RMSProp embedding parameters with debug support. |
| RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug.Options |
Optional attributes for
RetrieveTPUEmbeddingRMSPropParametersGradAccumDebug
|
| RetrieveTPUEmbeddingStochasticGradientDescentParameters | Retrieve SGD embedding parameters. |
| RetrieveTPUEmbeddingStochasticGradientDescentParameters.Options |
Optional attributes for
RetrieveTPUEmbeddingStochasticGradientDescentParameters
|
| RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug | Retrieve SGD embedding parameters with debug support. |
| RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug.Options |
Optional attributes for
RetrieveTPUEmbeddingStochasticGradientDescentParametersGradAccumDebug
|
| Reverse <T> | Reverses specific dimensions of a tensor. |
| ReverseSequence <T> | Reverses variable length slices. |
| ReverseSequence.Options |
Optional attributes for
ReverseSequence
|
| RiscAbs <T extends Number> | |
| RiscAdd <T extends Number> | Returns x + y element-wise. |
| RiscBinaryArithmetic <T extends Number> | |
| RiscBinaryComparison | |
| RiscBitcast <U> | |
| RiscBroadcast <T> | |
| RiscCast <U> | |
| RiscCeil <T extends Number> | |
| RiscCholesky <T extends Number> | |
| RiscConcat <T> | |
| RiscConv <T extends Number> | |
| RiscConv.Options |
Optional attributes for
RiscConv
|
| RiscCos <T extends Number> | |
| RiscDiv <T extends Number> | |
| RiscDot <T extends Number> | |
| RiscDot.Options |
Optional attributes for
RiscDot
|
| RiscExp <T extends Number> | |
| RiscFft <T> | |
| RiscFloor <T extends Number> | |
| RiscGather <T> | |
| RiscGather.Options |
Optional attributes for
RiscGather
|
| RiscImag <U extends Number> | |
| RiscIsFinite | |
| RiscLog <T extends Number> | |
| RiscLogicalAnd | |
| RiscLogicalNot | |
| RiscLogicalOr | |
| RiscMax <T extends Number> | Returns max(x, y) element-wise. |
| RiscMin <T extends Number> | |
| RiscMul <T extends Number> | |
| RiscNeg <T extends Number> | |
| RiscPad <T extends Number> | |
| RiscPool <T extends Number> | |
| RiscPool.Options |
Optional attributes for
RiscPool
|
| RiscPow <T extends Number> | |
| RiscRandomUniform | |
| RiscRandomUniform.Options |
Optional attributes for
RiscRandomUniform
|
| RiscReal <U extends Number> | |
| RiscReduce <T extends Number> | |
| RiscRem <T extends Number> | |
| RiscReshape <T extends Number> | |
| RiscReverse <T extends Number> | |
| RiscScatter <U extends Number> | |
| RiscShape <U extends Number> | |
| RiscSign <T extends Number> | |
| RiscSlice <T extends Number> | |
| RiscSort <T extends Number> | |
| RiscSqueeze <T> | |
| RiscSqueeze.Options |
Optional attributes for
RiscSqueeze
|
| RiscSub <T extends Number> | |
| RiscTranspose <T> | |
| RiscTriangularSolve <T extends Number> | |
| RiscTriangularSolve.Options |
Optional attributes for
RiscTriangularSolve
|
| RiscUnary <T extends Number> | |
| RngReadAndSkip | Advance the counter of a counter-based RNG. |
| RngSkip | Advance the counter of a counter-based RNG. |
| Roll <T> | Rolls the elements of a tensor along an axis. |
| SamplingDataset | Creates a dataset that takes a Bernoulli sample of the contents of another dataset. |
| ScaleAndTranslate | |
| ScaleAndTranslate.Options |
Optional attributes for
ScaleAndTranslate
|
| ScaleAndTranslateGrad <T extends Number> | |
| ScaleAndTranslateGrad.Options |
Optional attributes for
ScaleAndTranslateGrad
|
| ScatterAdd <T> | Adds sparse updates to a variable reference. |
| ScatterAdd.Options |
Optional attributes for
ScatterAdd
|
| ScatterDiv <T> | Divides a variable reference by sparse updates. |
| ScatterDiv.Options |
Optional attributes for
ScatterDiv
|
| ScatterMax <T extends Number> | Reduces sparse updates into a variable reference using the `max` operation. |
| ScatterMax.Options |
Optional attributes for
ScatterMax
|
| ScatterMin <T extends Number> | Reduces sparse updates into a variable reference using the `min` operation. |
| ScatterMin.Options |
Optional attributes for
ScatterMin
|
| ScatterMul <T> | Multiplies sparse updates into a variable reference. |
| ScatterMul.Options |
Optional attributes for
ScatterMul
|
| ScatterNd <U> | Scatter `updates` into a new tensor according to `indices`. |
| ScatterNdAdd <T> | Applies sparse addition to individual values or slices in a Variable. |
| ScatterNdAdd.Options |
Optional attributes for
ScatterNdAdd
|
| ScatterNdMax <T> | Computes element-wise maximum. |
| ScatterNdMax.Options |
Optional attributes for
ScatterNdMax
|
| ScatterNdMin <T> | Computes element-wise minimum. |
| ScatterNdMin.Options |
Optional attributes for
ScatterNdMin
|
| ScatterNdNonAliasingAdd <T> |
Applies sparse addition to `input` using individual values or slices
from `updates` according to indices `indices`. |
| ScatterNdSub <T> | Applies sparse subtraction to individual values or slices in a Variable. |
| ScatterNdSub.Options |
Optional attributes for
ScatterNdSub
|
| ScatterNdUpdate <T> |
Applies sparse `updates` to individual values or slices within a given
variable according to `indices`. |
| ScatterNdUpdate.Options |
Optional attributes for
ScatterNdUpdate
|
| ScatterSub <T> | Subtracts sparse updates to a variable reference. |
| ScatterSub.Options |
Optional attributes for
ScatterSub
|
| ScatterUpdate <T> | Applies sparse updates to a variable reference. |
| ScatterUpdate.Options |
Optional attributes for
ScatterUpdate
|
| SelectV2 <T> | |
| Send | Sends the named tensor from send_device to recv_device. |
| Send.Options |
Optional attributes for
Send
|
| SendTPUEmbeddingGradients | Performs gradient updates of embedding tables. |
| SetDiff1d <T, U extends Number> | Computes the difference between two lists of numbers or strings. |
| SetSize | Number of unique elements along last dimension of input `set`. |
| SetSize.Options |
Optional attributes for
SetSize
|
| Shape <U extends Number> | Returns the shape of a tensor. |
| ShapeN <U extends Number> | Returns shape of tensors. |
| ShardDataset | Creates a `Dataset` that includes only 1/`num_shards` of this dataset. |
| ShardDataset.Options |
Optional attributes for
ShardDataset
|
| ShuffleAndRepeatDatasetV2 | |
| ShuffleAndRepeatDatasetV2.Options |
Optional attributes for
ShuffleAndRepeatDatasetV2
|
| ShuffleDatasetV2 | |
| ShuffleDatasetV3 | |
| ShuffleDatasetV3.Options |
Optional attributes for
ShuffleDatasetV3
|
| ShutdownDistributedTPU | Shuts down a running distributed TPU system. |
| Size <U extends Number> | Returns the size of a tensor. |
| Skipgram | Parses a text file and creates a batch of examples. |
| Skipgram.Options |
Optional attributes for
Skipgram
|
| SleepDataset | |
| Slice <T> | Return a slice from 'input'. |
| SlidingWindowDataset | Creates a dataset that passes a sliding window over `input_dataset`. |
| Snapshot <T> | Returns a copy of the input tensor. |
| SnapshotDataset | Creates a dataset that will write to / read from a snapshot. |
| SnapshotDataset.Options |
Optional attributes for
SnapshotDataset
|
| SobolSample <T extends Number> | Generates points from the Sobol sequence. |
| SpaceToBatchNd <T> | SpaceToBatch for N-D tensors of type T. |
| SparseApplyAdagradV2 <T> | Update relevant entries in '*var' and '*accum' according to the adagrad scheme. |
| SparseApplyAdagradV2.Options |
Optional attributes for
SparseApplyAdagradV2
|
| SparseBincount <U extends Number> | Counts the number of occurrences of each value in an integer array. |
| SparseBincount.Options |
Optional attributes for
SparseBincount
|
| SparseCountSparseOutput <U extends Number> | Performs sparse-output bin counting for a sparse tensor input. |
| SparseCountSparseOutput.Options |
Optional attributes for
SparseCountSparseOutput
|
| SparseCrossHashed | Generates sparse cross from a list of sparse and dense tensors. |
| SparseCrossV2 | Generates sparse cross from a list of sparse and dense tensors. |
| SparseMatrixAdd | Sparse addition of two CSR matrices, C = alpha * A + beta * B. |
| SparseMatrixMatMul <T> | Matrix-multiplies a sparse matrix with a dense matrix. |
| SparseMatrixMatMul.Options |
Optional attributes for
SparseMatrixMatMul
|
| SparseMatrixMul | Element-wise multiplication of a sparse matrix with a dense tensor. |
| SparseMatrixNNZ | Returns the number of nonzeroes of `sparse_matrix`. |
| SparseMatrixOrderingAMD | Computes the Approximate Minimum Degree (AMD) ordering of `input`. |
| SparseMatrixSoftmax | Calculates the softmax of a CSRSparseMatrix. |
| SparseMatrixSoftmaxGrad | Calculates the gradient of the SparseMatrixSoftmax op. |
| SparseMatrixSparseCholesky | Computes the sparse Cholesky decomposition of `input`. |
| SparseMatrixSparseMatMul | Sparse-matrix-multiplies two CSR matrices `a` and `b`. |
| SparseMatrixSparseMatMul.Options |
Optional attributes for
SparseMatrixSparseMatMul
|
| SparseMatrixTranspose | Transposes the inner (matrix) dimensions of a CSRSparseMatrix. |
| SparseMatrixTranspose.Options |
Optional attributes for
SparseMatrixTranspose
|
| SparseMatrixZeros | Creates an all-zeros CSRSparseMatrix with shape `dense_shape`. |
| SparseTensorToCSRSparseMatrix | Converts a SparseTensor to a (possibly batched) CSRSparseMatrix. |
| Spence <T extends Number> | |
| Split <T> | Splits a tensor into `num_split` tensors along one dimension. |
| SplitV <T> | Splits a tensor into `num_split` tensors along one dimension. |
| Squeeze <T> | Removes dimensions of size 1 from the shape of a tensor. |
| Squeeze.Options |
Optional attributes for
Squeeze
|
| Stack <T> | Packs a list of `N` rank-`R` tensors into one rank-`(R+1)` tensor. |
| Stack.Options |
Optional attributes for
Stack
|
| Stage | Stage values similar to a lightweight Enqueue. |
| Stage.Options |
Optional attributes for
Stage
|
| StageClear | Op removes all elements in the underlying container. |
| StageClear.Options |
Optional attributes for
StageClear
|
| StagePeek | Op peeks at the values at the specified index. |
| StagePeek.Options |
Optional attributes for
StagePeek
|
| StageSize | Op returns the number of elements in the underlying container. |
| StageSize.Options |
Optional attributes for
StageSize
|
| StatefulRandomBinomial <V extends Number> | |
| StatefulStandardNormal <U> | Outputs random values from a normal distribution. |
| StatefulStandardNormalV2 <U> | Outputs random values from a normal distribution. |
| StatefulTruncatedNormal <U> | Outputs random values from a truncated normal distribution. |
| StatefulUniform <U> | Outputs random values from a uniform distribution. |
| StatefulUniformFullInt <U> | Outputs random integers from a uniform distribution. |
| StatefulUniformInt <U> | Outputs random integers from a uniform distribution. |
| StatelessParameterizedTruncatedNormal <V extends Number> | |
| StatelessRandomBinomial <W extends Number> | Outputs deterministic pseudorandom random numbers from a binomial distribution. |
| StatelessRandomGammaV2 <V extends Number> | Outputs deterministic pseudorandom random numbers from a gamma distribution. |
| StatelessRandomGetAlg | Picks the best counter-based RNG algorithm based on device. |
| StatelessRandomGetKeyCounter | Scrambles seed into key and counter, using the best algorithm based on device. |
| StatelessRandomGetKeyCounterAlg | Picks the best algorithm based on device, and scrambles seed into key and counter. |
| StatelessRandomNormalV2 <U extends Number> | Outputs deterministic pseudorandom values from a normal distribution. |
| StatelessRandomPoisson <W extends Number> | Outputs deterministic pseudorandom random numbers from a Poisson distribution. |
| StatelessRandomUniformFullInt <V extends Number> | Outputs deterministic pseudorandom random integers from a uniform distribution. |
| StatelessRandomUniformFullIntV2 <U extends Number> | Outputs deterministic pseudorandom random integers from a uniform distribution. |
| StatelessRandomUniformIntV2 <U extends Number> | Outputs deterministic pseudorandom random integers from a uniform distribution. |
| StatelessRandomUniformV2 <U extends Number> | Outputs deterministic pseudorandom random values from a uniform distribution. |
| StatelessSampleDistortedBoundingBox <T extends Number> | Generate a randomly distorted bounding box for an image deterministically. |
| StatelessSampleDistortedBoundingBox.Options |
Optional attributes for
StatelessSampleDistortedBoundingBox
|
| StatelessTruncatedNormalV2 <U extends Number> | Outputs deterministic pseudorandom values from a truncated normal distribution. |
| StatsAggregatorHandleV2 | |
| StatsAggregatorHandleV2.Options |
Optional attributes for
StatsAggregatorHandleV2
|
| StatsAggregatorSetSummaryWriter | Set a summary_writer_interface to record statistics using given stats_aggregator. |
| StopGradient <T> | Stops gradient computation. |
| StridedSlice <T> | Return a strided slice from `input`. |
| StridedSlice.Options |
Optional attributes for
StridedSlice
|
| StridedSliceAssign <T> | Assign `value` to the sliced l-value reference of `ref`. |
| StridedSliceAssign.Options |
Optional attributes for
StridedSliceAssign
|
| StridedSliceGrad <U> | Returns the gradient of `StridedSlice`. |
| StridedSliceGrad.Options |
Optional attributes for
StridedSliceGrad
|
| StringLower | Converts all uppercase characters into their respective lowercase replacements. |
| StringLower.Options |
Optional attributes for
StringLower
|
| StringNGrams <T extends Number> | Creates ngrams from ragged string data. |
| StringUpper | Converts all lowercase characters into their respective uppercase replacements. |
| StringUpper.Options |
Optional attributes for
StringUpper
|
| Sum <T> | Computes the sum of elements across dimensions of a tensor. |
| Sum.Options |
Optional attributes for
Sum
|
| SwitchCond <T> | Forwards `data` to the output port determined by `pred`. |
| TemporaryVariable <T> | Returns a tensor that may be mutated, but only persists within a single step. |
| TemporaryVariable.Options |
Optional attributes for
TemporaryVariable
|
| TensorArray | An array of Tensors of given size. |
| TensorArray.Options |
Optional attributes for
TensorArray
|
| TensorArrayClose | Delete the TensorArray from its resource container. |
| TensorArrayConcat <T> | Concat the elements from the TensorArray into value `value`. |
| TensorArrayConcat.Options |
Optional attributes for
TensorArrayConcat
|
| TensorArrayGather <T> | Gather specific elements from the TensorArray into output `value`. |
| TensorArrayGather.Options |
Optional attributes for
TensorArrayGather
|
| TensorArrayGrad | Creates a TensorArray for storing the gradients of values in the given handle. |
| TensorArrayGradWithShape | Creates a TensorArray for storing multiple gradients of values in the given handle. |
| TensorArrayPack <T> | |
| TensorArrayPack.Options |
Optional attributes for
TensorArrayPack
|
| TensorArrayRead <T> | Read an element from the TensorArray into output `value`. |
| TensorArrayScatter | Scatter the data from the input value into specific TensorArray elements. |
| TensorArraySize | Get the current size of the TensorArray. |
| TensorArraySplit | Split the data from the input value into TensorArray elements. |
| TensorArrayUnpack | |
| TensorArrayWrite | Push an element onto the tensor_array. |
| TensorListConcat <T> | Concats all tensors in the list along the 0th dimension. |
| TensorListConcat.Options |
Optional attributes for
TensorListConcat
|
| TensorListConcatLists | |
| TensorListConcatV2 <U> | Concats all tensors in the list along the 0th dimension. |
| TensorListElementShape <T extends Number> | The shape of the elements of the given list, as a tensor. |
| TensorListFromTensor | Creates a TensorList which, when stacked, has the value of `tensor`. |
| TensorListGather <T> | Creates a Tensor by indexing into the TensorList. |
| TensorListGetItem <T> | |
| TensorListLength | Returns the number of tensors in the input tensor list. |
| TensorListPopBack <T> | Returns the last element of the input list as well as a list with all but that element. |
| TensorListPushBack | Returns a list which has the passed-in `Tensor` as last element and the other elements of the given list in `input_handle`. |
| TensorListPushBackBatch | |
| TensorListReserve | List of the given size with empty elements. |
| TensorListResize | Resizes the list. |
| TensorListScatter | Creates a TensorList by indexing into a Tensor. |
| TensorListScatterIntoExistingList | Scatters tensor at indices in an input list. |
| TensorListScatterV2 | Creates a TensorList by indexing into a Tensor. |
| TensorListSetItem | |
| TensorListSplit | Splits a tensor into a list. |
| TensorListStack <T> | Stacks all tensors in the list. |
| TensorListStack.Options |
Optional attributes for
TensorListStack
|
| TensorMapErase | Returns a tensor map with item from given key erased. |
| TensorMapHasKey | Returns whether the given key exists in the map. |
| TensorMapInsert | Returns a map that is the 'input_handle' with the given key-value pair inserted. |
| TensorMapLookup <U> | Returns the value from a given key in a tensor map. |
| TensorMapSize | Returns the number of tensors in the input tensor map. |
| TensorMapStackKeys <T> | Returns a Tensor stack of all keys in a tensor map. |
| TensorScatterAdd <T> | Adds sparse `updates` to an existing tensor according to `indices`. |
| TensorScatterMax <T> | |
| TensorScatterMin <T> | |
| TensorScatterSub <T> | Subtracts sparse `updates` from an existing tensor according to `indices`. |
| TensorScatterUpdate <T> | Scatter `updates` into an existing tensor according to `indices`. |
| TensorStridedSliceUpdate <T> | Assign `value` to the sliced l-value reference of `input`. |
| TensorStridedSliceUpdate.Options |
Optional attributes for
TensorStridedSliceUpdate
|
| ThreadPoolDataset | Creates a dataset that uses a custom thread pool to compute `input_dataset`. |
| ThreadPoolHandle | Creates a dataset that uses a custom thread pool to compute `input_dataset`. |
| ThreadPoolHandle.Options |
Optional attributes for
ThreadPoolHandle
|
| Tile <T> | Constructs a tensor by tiling a given tensor. |
| Timestamp | Provides the time since epoch in seconds. |
| ToBool | Converts a tensor to a scalar predicate. |
| TopKUnique | Returns the TopK unique values in the array in sorted order. |
| TopKWithUnique | Returns the TopK values in the array in sorted order. |
| TPUCompilationResult | Returns the result of a TPU compilation. |
| TPUCompileSucceededAssert | Asserts that compilation succeeded. |
| TPUEmbeddingActivations | An op enabling differentiation of TPU Embeddings. |
| TPUExecute | Op that loads and executes a TPU program on a TPU device. |
| TPUExecuteAndUpdateVariables | Op that executes a program with optional in-place variable updates. |
| TPUOrdinalSelector | A TPU core selector Op. |
| TPUPartitionedInput <T> | An op that groups a list of partitioned inputs together. |
| TPUPartitionedInput.Options |
Optional attributes for
TPUPartitionedInput
|
| TPUPartitionedOutput <T> |
An op that demultiplexes a tensor to be sharded by XLA to a list of partitioned
outputs outside the XLA computation. |
| TPUPartitionedOutput.Options |
Optional attributes for
TPUPartitionedOutput
|
| TPUReplicatedInput <T> | Connects N inputs to an N-way replicated TPU computation. |
| TPUReplicatedInput.Options |
Optional attributes for
TPUReplicatedInput
|
| TPUReplicatedOutput <T> | Connects N outputs from an N-way replicated TPU computation. |
| TPUReplicateMetadata | Metadata indicating how the TPU computation should be replicated. |
| TPUReplicateMetadata.Options |
Optional attributes for
TPUReplicateMetadata
|
| TPUReshardVariables | Op that reshards on-device TPU variables to specified state. |
| TridiagonalMatMul <T> | Calculate product with tridiagonal matrix. |
| TridiagonalSolve <T> | Solves tridiagonal systems of equations. |
| TridiagonalSolve.Options |
Optional attributes for
TridiagonalSolve
|
| Unbatch <T> | Reverses the operation of Batch for a single output Tensor. |
| Unbatch.Options |
Optional attributes for
Unbatch
|
| UnbatchGrad <T> | Gradient of Unbatch. |
| UnbatchGrad.Options |
Optional attributes for
UnbatchGrad
|
| UncompressElement | Uncompresses a compressed dataset element. |
| UnicodeDecode <T extends Number> | Decodes each string in `input` into a sequence of Unicode code points. |
| UnicodeDecode.Options |
Optional attributes for
UnicodeDecode
|
| UnicodeEncode | Encode a tensor of ints into unicode strings. |
| UnicodeEncode.Options |
Optional attributes for
UnicodeEncode
|
| Unique <T, V extends Number> | Finds unique elements along an axis of a tensor. |
| UniqueDataset | Creates a dataset that contains the unique elements of `input_dataset`. |
| UniqueWithCounts <T, V extends Number> | Finds unique elements along an axis of a tensor. |
| UnravelIndex <T extends Number> | Converts an array of flat indices into a tuple of coordinate arrays. |
| UnsortedSegmentJoin | Joins the elements of `inputs` based on `segment_ids`. |
| UnsortedSegmentJoin.Options |
Optional attributes for
UnsortedSegmentJoin
|
| Unstack <T> | Unpacks a given dimension of a rank-`R` tensor into `num` rank-`(R-1)` tensors. |
| Unstack.Options |
Optional attributes for
Unstack
|
| Unstage | Op is similar to a lightweight Dequeue. |
| Unstage.Options |
Optional attributes for
Unstage
|
| UnwrapDatasetVariant | |
| UpperBound <U extends Number> | Applies upper_bound(sorted_search_values, values) along each row. |
| VarHandleOp | Creates a handle to a Variable resource. |
| VarHandleOp.Options |
Optional attributes for
VarHandleOp
|
| Variable <T> | Holds state in the form of a tensor that persists across steps. |
| Variable.Options |
Optional attributes for
Variable
|
| VariableShape <T extends Number> | Returns the shape of the variable pointed to by `resource`. |
| VarIsInitializedOp | Checks whether a resource handle-based variable has been initialized. |
| Where | Returns locations of nonzero / true values in a tensor. |
| Where3 <T> | Selects elements from `x` or `y`, depending on `condition`. |
| WorkerHeartbeat | Worker heartbeat op. |
| WrapDatasetVariant | |
| WriteRawProtoSummary | Writes a serialized proto summary. |
| XlaRecvFromHost <T> | An op to receive a tensor from the host. |
| XlaSendToHost | An op to send a tensor to the host. |
| Xlog1py <T> | Returns 0 if x == 0, and x * log1p(y) otherwise, elementwise. |
| Zeros <T> | An operator creating a constant initialized with zeros of the shape given by `dims`. |
| ZerosLike <T> | Returns a tensor of zeros with the same shape and type as x. |