TensorFlow 1 version | View source on GitHub |
Type specification for a tf.RaggedTensor
.
Inherits From: TypeSpec
tf.RaggedTensorSpec(
shape=None, dtype=tf.dtypes.float32, ragged_rank=None,
row_splits_dtype=tf.dtypes.int64, flat_values_spec=None
)
Args | |
---|---|
shape
|
The shape of the RaggedTensor, or None to allow any shape. If a
shape is specified, then all ragged dimensions must have size None .
|
dtype
|
tf.DType of values in the RaggedTensor.
|
ragged_rank
|
Python integer, the number of times the RaggedTensor's
flat_values is partitioned. Defaults to shape.ndims - 1 .
|
row_splits_dtype
|
dtype for the RaggedTensor's row_splits tensor. One
of tf.int32 or tf.int64 .
|
flat_values_spec
|
TypeSpec for flat_value of the RaggedTensor. It shall be
provided when the flat_values is a CompositeTensor rather then Tensor.
If both dtype and flat_values_spec and are provided, dtype must
be the same as flat_values_spec.dtype . (experimental)
|
Attributes | |
---|---|
dtype
|
The tf.dtypes.DType specified by this type for the RaggedTensor.
|
flat_values_spec
|
The TypeSpec of the flat_values of RaggedTensor.
|
ragged_rank
|
The number of times the RaggedTensor's flat_values is partitioned.
Defaults to
|
row_splits_dtype
|
The tf.dtypes.DType of the RaggedTensor's row_splits .
|
shape
|
The statically known shape of the RaggedTensor.
|
value_type
|
The Python type for values that are compatible with this TypeSpec.
In particular, all values that are compatible with this TypeSpec must be an instance of this type. |
Methods
from_value
@classmethod
from_value( value )
is_compatible_with
is_compatible_with(
spec_or_value
)
Returns true if spec_or_value
is compatible with this TypeSpec.
most_specific_compatible_type
most_specific_compatible_type(
other
)
Returns the most specific TypeSpec compatible with self
and other
.
Args | |
---|---|
other
|
A TypeSpec .
|
Raises | |
---|---|
ValueError
|
If there is no TypeSpec that is compatible with both self
and other .
|
__eq__
__eq__(
other
)
Return self==value.
__ne__
__ne__(
other
)
Return self!=value.