An integer or tuple/list of 2 integers: (pool_height, pool_width)
specifying the size of the pooling window.
Can be a single integer to specify the same value for
all spatial dimensions.
strides
An integer or tuple/list of 2 integers,
specifying the strides of the pooling operation.
Can be a single integer to specify the same value for
all spatial dimensions.
padding
A string. The padding method, either 'valid' or 'same'.
Case-insensitive.
data_format
A string. The ordering of the dimensions in the inputs.
channels_last (default) and channels_first are supported.
channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to
inputs with shape (batch, channels, height, width).
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2021-08-16 UTC."],[],[],null,["# tf.compat.v1.layers.max_pooling2d\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/master/keras/legacy_tf_layers/pooling.py#L489-L560) |\n\nMax pooling layer for 2D inputs (e.g. images). \n\n tf.compat.v1.layers.max_pooling2d(\n inputs, pool_size, strides, padding='valid',\n data_format='channels_last', name=None\n )\n\n\u003cbr /\u003e\n\nMigrate to TF2\n--------------\n\n\u003cbr /\u003e\n\n| **Caution:** This API was designed for TensorFlow v1. Continue reading for details on how to migrate from this API to a native TensorFlow v2 equivalent. See the [TensorFlow v1 to TensorFlow v2 migration guide](https://www.tensorflow.org/guide/migrate) for instructions on how to migrate the rest of your code.\n\nThis API is not compatible with eager execution or [`tf.function`](../../../../tf/function).\n\nPlease refer to [tf.layers section of the migration guide](https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)\nto migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2\nlayer is [`tf.keras.layers.MaxPooling2D`](../../../../tf/keras/layers/MaxPool2D).\n\n#### Structural Mapping to Native TF2\n\nNone of the supported arguments have changed name.\n\nBefore: \n\n y = tf.compat.v1.layers.max_pooling2d(x, pool_size=2, strides=2)\n\nAfter:\n\nTo migrate code using TF1 functional layers use the [Keras Functional API](https://www.tensorflow.org/guide/keras/functional): \n\n x = tf.keras.Input((28, 28, 1))\n y = tf.keras.layers.MaxPooling2D(pool_size=2, strides=2)(x)\n model = tf.keras.Model(x, y)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\nDescription\n-----------\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `inputs` | The tensor over which to pool. Must have rank 4. |\n| `pool_size` | An integer or tuple/list of 2 integers: (pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions. |\n| `strides` | An integer or tuple/list of 2 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions. |\n| `padding` | A string. The padding method, either 'valid' or 'same'. Case-insensitive. |\n| `data_format` | A string. The ordering of the dimensions in the inputs. `channels_last` (default) and `channels_first` are supported. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. |\n| `name` | A string, the name of the layer. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| Output tensor. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|--------------------------------|\n| `ValueError` | if eager execution is enabled. |\n\n\u003cbr /\u003e"]]