Operacje
mhlo.abs (mhlo::AbsOp)
Operacja brzucha
Składnia:
operation ::= `mhlo.abs` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Wykonuje operację abs na tensorze operand elementarnego i generuje tensor result .
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#abs
Przykład:
%result = mhlo.abs %operand : tensor<3xi32>
Cechy: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfejsy: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Operandy:
| Operand | Opis |
|---|---|
operand | tensor rangowany 2/4/8/16/32/64-bitowych liczb całkowitych bez znaku lub 4/6/8/16/32/64-bitowych liczb zmiennoprzecinkowych lub typu zespolonego z 32/64-bitowymi elementami zmiennoprzecinkowymi lub 2/4/8/16/32-bitowymi jednorodnymi skwantyzowanymi liczbami całkowitymi ze znakiem lub 2/4/8/16/32-bitowymi jednorodnymi skwantyzowanymi liczbami całkowitymi bez znaku lub 2/4/8/16/32-bitowymi jednorodnymi skwantyzowanymi wartościami liczb całkowitych bez znaku na oś |
Wyniki:
| Wynik | Opis |
|---|---|
result | tensor rangowany 2/4/8/16/32/64-bitowych liczb całkowitych bez znaku lub 4/6/8/16/32/64-bitowych liczb zmiennoprzecinkowych lub 2/4/8/16/32-bitowych jednorodnych skwantyzowanych liczb całkowitych ze znakiem lub 2/4/8/16/32-bitowych jednorodnych skwantyzowanych liczb całkowitych ze znakiem na oś lub 2/4/8/16/32-bitowych jednorodnych skwantyzowanych liczb całkowitych bez znaku lub 2/4/8/16/32-bitowych jednorodnych skwantyzowanych liczb całkowitych bez znaku na oś |
mhlo.acos (mhlo::AcosOp)
Operacja Acos
Składnia:
operation ::= `mhlo.acos` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Wykonuje operację acos na tensorze operand elementarnego i zwraca tensor result .
Przykład:
%result = mhlo.acos %operand : tensor<2x2xf32>
Cechy: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfejsy: InferShapedTypeOpInterface , InferTypeOpInterface
Operandy:
| Operand | Opis |
|---|---|
operand | tensor typu float 4/6/8/16/32/64-bitowego lub typu złożonego z wartościami elementów float 32/64-bitowymi |
Wyniki:
| Wynik | Opis |
|---|---|
result | tensor typu float 4/6/8/16/32/64-bitowego lub typu złożonego z wartościami elementów float 32/64-bitowymi |
mhlo.acosh (mhlo::AcoshOp)
Operacja Acosh
Składnia:
operation ::= `mhlo.acosh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Wykonuje operację acosh elementarną na tensorze operand i generuje tensor result .
Przykład:
%result = mhlo.acosh %operand : tensor<2x2xf32>
Cechy: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfejsy: InferShapedTypeOpInterface , InferTypeOpInterface
Operandy:
| Operand | Opis |
|---|---|
operand | tensor typu float 4/6/8/16/32/64-bitowego lub typu złożonego z wartościami elementów float 32/64-bitowymi |
Wyniki:
| Wynik | Opis |
|---|---|
result | tensor typu float 4/6/8/16/32/64-bitowego lub typu złożonego z wartościami elementów float 32/64-bitowymi |
mhlo.add (mhlo::AddOp)
Dodaj operację
Składnia:
operation ::= `mhlo.add` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Wykonuje dodawanie elementarne dwóch tensorów lhs i rhs i generuje tensor result .
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#add
Przykład:
%result = mhlo.add %lhs, %rhs : tensor<2x2xi32>
Cechy: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfejsy: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Operandy:
| Operand | Opis |
|---|---|
lhs | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub wartościami całkowitymi skwantyzowanymi na tensor lub na oś |
rhs | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub wartościami całkowitymi skwantyzowanymi na tensor lub na oś |
Wyniki:
| Wynik | Opis |
|---|---|
result | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub wartościami całkowitymi skwantyzowanymi na tensor lub na oś |
mhlo.add_dependency (mhlo::AddDependencyOp)
Operacja AddDependency
Składnia:
operation ::= `mhlo.add_dependency` operands attr-dict `:` functional-type(operands, results)
Operacja ta jest prywatna dla kompilatora XLA, więc nie ma jeszcze specyfikacji.
Nieformalnie, ta operacja ma dwa operandy: operand danych i token. Wynikiem operacji jest operand danych. W połączeniu z funkcją AfterAll, operacja ta umożliwia uporządkowanie operacji niepowodujących efektów ubocznych (czyli tych, które nie generują wartości tokenów).
Przykład:
%1 = mhlo.add_dependency %arg0, %0 : (tensor<3x4xf32>, !mhlo.token) -> tensor<3x4xf32>
Cechy: AlwaysSpeculatableImplTrait
Interfejsy: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Operandy:
| Operand | Opis |
|---|---|
operand | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub skwantyzowanymi wartościami całkowitymi na tensor lub tensor rangowany wartościami całkowitymi na oś lub token lub token stablehlo |
token | token lub token stablehlo |
Wyniki:
| Wynik | Opis |
|---|---|
output | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub skwantyzowanymi wartościami całkowitymi na tensor lub tensor rangowany wartościami całkowitymi na oś lub token lub token stablehlo |
mhlo.after_all (mhlo::AfterAllOp)
Operacja AfterAll
Składnia:
operation ::= `mhlo.after_all` $inputs attr-dict
`:` custom<VariadicSameOperandsAndResultType>(ref($inputs), type($inputs), type($result))
Zapewnia, że operacje generujące dane inputs są wykonywane przed operacjami zależnymi od result .
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
Przykład:
%result = mhlo.after_all %input0, %input1 : !mhlo.token
Cechy: AlwaysSpeculatableImplTrait
Interfejsy: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Operandy:
| Operand | Opis |
|---|---|
inputs | wariadyczny tokena |
Wyniki:
| Wynik | Opis |
|---|---|
result | znak |
mhlo.all_gather (mhlo::AllGatherOp)
Operacja AllGather
W obrębie każdej grupy procesów w siatce procesów, funkcja łączy wartości tensora operandu z każdego procesu wzdłuż all_gather_dim i generuje tensor wynikowy. computation są przeprowadzane oddzielnie dla każdego operandu w operands , generując jeden wynik na operand.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_gather
Przykład:
%result = "mhlo.all_gather"(%operand) {
all_gather_dim = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>,
// use_global_device_ids = false
} : (tensor<2x2xf32>) -> tensor<2x4xf32>
Cechy: SameOperandsAndResultElementType
Atrybuty:
| Atrybut | Typ MLIR | Opis |
|---|---|---|
all_gather_dim | ::mlir::IntegerAttr | 64-bitowy atrybut liczby całkowitej bez znaku, którego wartość jest nieujemna |
replica_groups | ::mlir::DenseIntElementsAttr | Atrybut 64-bitowych elementów całkowitych bez znaku |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | dwie 64-bitowe liczby całkowite „uchwyt” i „typ” |
use_global_device_ids | ::mlir::UnitAttr | atrybut jednostki |
Operandy:
| Operand | Opis |
|---|---|
operands | zmienna tensora rangowanego o 4/6/8/16/32/64-bitowym floatie lub bool lub 2/4/8/16/32/64-bitowym interze lub typie zespolonym z 32/64-bitowymi elementami float lub skwantyzowanymi wartościami całkowitymi na tensor lub na oś |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | zmienna tensora rangowanego o 4/6/8/16/32/64-bitowym floatie lub bool lub 2/4/8/16/32/64-bitowym interze lub typie zespolonym z 32/64-bitowymi elementami float lub skwantyzowanymi wartościami całkowitymi na tensor lub na oś |
mhlo.all_reduce (mhlo::AllReduceOp)
Operacja AllReduce
W każdej grupie procesów w siatce procesów stosuje computation funkcji redukcji do wartości tensora operandu z każdego procesu i generuje tensor wynikowy. computation jest przeprowadzane oddzielnie dla każdego operandu w operands , generując jeden wynik na operand.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
Przykład:
%result = "mhlo.all_reduce"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg1, %arg2 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<4xf32>) -> tensor<4xf32>
Cechy: InferTensorType , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfejsy: InferShapedTypeOpInterface , InferTypeOpInterface
Atrybuty:
| Atrybut | Typ MLIR | Opis |
|---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | Atrybut 64-bitowych elementów całkowitych bez znaku |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | dwie 64-bitowe liczby całkowite „uchwyt” i „typ” |
use_global_device_ids | ::mlir::UnitAttr | atrybut jednostki |
Operandy:
| Operand | Opis |
|---|---|
operands | zmienna tensora rangowanego o 4/6/8/16/32/64-bitowym floatie lub bool lub 2/4/8/16/32/64-bitowym interze lub typie zespolonym z 32/64-bitowymi elementami float lub skwantyzowanymi wartościami całkowitymi na tensor lub na oś |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | zmienna tensora rangowanego o 4/6/8/16/32/64-bitowym floatie lub bool lub 2/4/8/16/32/64-bitowym interze lub typie zespolonym z 32/64-bitowymi elementami float lub skwantyzowanymi wartościami całkowitymi na tensor lub na oś |
mhlo.all_to_all (mhlo::AllToAllOp)
Operacja AllToAll
W obrębie każdej grupy procesów w siatce procesów dzieli wartości tensora operand wzdłuż split_dimension na części, rozprasza podzielone części pomiędzy procesami, łączy rozproszone części wzdłuż concat_dimension i generuje tensor result .
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_to_all
Przykład:
%result = "mhlo.all_to_all"(%operand) {
split_dimension = 1 : i64,
concat_dimension = 0 : i64,
split_count = 2 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<2x4xf32>) -> tensor<4x2xf32>
Cechy: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsElementType , SameOperandsShape , SameVariadicOperandSize
Interfejsy: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Atrybuty:
| Atrybut | Typ MLIR | Opis |
|---|---|---|
split_dimension | ::mlir::IntegerAttr | 64-bitowy atrybut liczby całkowitej bez znaku, którego wartość jest nieujemna |
concat_dimension | ::mlir::IntegerAttr | 64-bitowy atrybut liczby całkowitej bez znaku, którego wartość jest nieujemna |
split_count | ::mlir::IntegerAttr | 64-bitowy atrybut liczby całkowitej bez znaku, którego wartość jest dodatnia |
replica_groups | ::mlir::DenseIntElementsAttr | Atrybut 64-bitowych elementów całkowitych bez znaku |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | dwie 64-bitowe liczby całkowite „uchwyt” i „typ” |
Operandy:
| Operand | Opis |
|---|---|
operand | zmienna tensora rangowanego o 4/6/8/16/32/64-bitowym floatie lub bool lub 2/4/8/16/32/64-bitowym interze lub typie zespolonym z 32/64-bitowymi elementami float lub skwantyzowanymi wartościami całkowitymi na tensor lub na oś |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | zmienna tensora rangowanego o 4/6/8/16/32/64-bitowym floatie lub bool lub 2/4/8/16/32/64-bitowym interze lub typie zespolonym z 32/64-bitowymi elementami float lub skwantyzowanymi wartościami całkowitymi na tensor lub na oś |
mhlo.and (mhlo::AndOp)
I operacja
Składnia:
operation ::= `mhlo.and` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Wykonuje elementarne AND dwóch tensorów lhs i rhs i generuje tensor result
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#and
Przykład:
%result = mhlo.and %lhs, %rhs : tensor<2x2xi32>
Cechy: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfejsy: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Operandy:
| Operand | Opis |
|---|---|
lhs | tensor rangowany wartości boolowskich lub całkowitych 2/4/8/16/32/64-bitowych |
rhs | tensor rangowany wartości boolowskich lub całkowitych 2/4/8/16/32/64-bitowych |
Wyniki:
| Wynik | Opis |
|---|---|
result | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub wartościami całkowitymi skwantyzowanymi na tensor lub na oś |
mhlo.asin (mhlo::AsinOp)
Operacja Asin
Składnia:
operation ::= `mhlo.asin` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Wykonuje operację asin na tensorze operand elementarnego i generuje tensor result .
Przykład:
%result = mhlo.asin %operand : tensor<2x2xf32>
Cechy: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfejsy: InferShapedTypeOpInterface , InferTypeOpInterface
Operandy:
| Operand | Opis |
|---|---|
operand | tensor typu float 4/6/8/16/32/64-bitowego lub typu złożonego z wartościami elementów float 32/64-bitowymi |
Wyniki:
| Wynik | Opis |
|---|---|
result | tensor typu float 4/6/8/16/32/64-bitowego lub typu złożonego z wartościami elementów float 32/64-bitowymi |
mhlo.asinh (mhlo::AsinhOp)
Operacja Asinh
Składnia:
operation ::= `mhlo.asinh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Wykonuje operację asinh na tensorze operand elementarnego i generuje tensor result .
Przykład:
%result = mhlo.asinh %operand : tensor<2x2xf32>
Cechy: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfejsy: InferShapedTypeOpInterface , InferTypeOpInterface
Operandy:
| Operand | Opis |
|---|---|
operand | tensor typu float 4/6/8/16/32/64-bitowego lub typu złożonego z wartościami elementów float 32/64-bitowymi |
Wyniki:
| Wynik | Opis |
|---|---|
result | tensor typu float 4/6/8/16/32/64-bitowego lub typu złożonego z wartościami elementów float 32/64-bitowymi |
mhlo.async_done (mhlo::AsyncDoneOp)
Operacja AsyncDone
Operacja ta jest prywatna dla kompilatora XLA, więc nie ma jeszcze specyfikacji.
Nieformalnie, operacja ta blokuje się do końca obliczeń asynchronicznych. Zwraca ona wynik końcowy obliczeń asynchronicznych.
Więcej informacji znajdziesz w dokumentacji AsyncStart.
Interfejsy: InferTypeOpInterface
Operandy:
| Operand | Opis |
|---|---|
bundle | async_bundle z dowolną kombinacją tensora rankingowego 4/6/8/16/32/64-bitowego typu float lub bool lub 2/4/8/16/32/64-bitowego typu integer lub typu zespolonego z 32/64-bitowymi elementami float lub wartościami kwantyzowanymi na tensor lub na oś lub wartościami tokenów lub tokenów stablehlo |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | zmiennoprzecinkowy tensor o 4/6/8/16/32/64-bitowym floatie lub wartości logicznej lub 2/4/8/16/32/64-bitowym typie całkowitym lub zespolonym z 32/64-bitowymi elementami float lub skwantyzowanymi wartościami całkowitymi na tensor lub skwantyzowanymi wartościami całkowitymi na oś lub tokenem lub tokenem stablehlo lub zagnieżdżoną krotką z dowolną kombinacją tensorów o 4/6/8/16/32/64-bitowym floatie lub wartościach logicznych lub 2/4/8/16/32/64-bitowym integerze lub zespolonym z 32/64-bitowymi elementami float lub skwantyzowanymi wartościami całkowitymi na tensor lub memref o 4/6/8/16/32/64-bitowym floatie lub wartościach logicznych lub 2/4/8/16/32/64-bitowym integerze lub zespolonym z 32/64-bitowymi elementy zmiennoprzecinkowe lub skwantyzowane wartości całkowite na tensor lub tensor rangowany skwantyzowanych wartości całkowitych na oś lub wartości tokenów |
mhlo.async_start (mhlo::AsyncStartOp)
Operacja AsyncStart
Operacja ta jest prywatna dla kompilatora XLA, więc nie ma jeszcze specyfikacji.
Nieformalnie operacja ta rozpoczyna obliczenia asynchroniczne.
Używa się tego, gdy istnieją funkcje zawierające zarówno asynchroniczne oczekiwania (takie jak DMA), jak i obliczenia w wątku. Na przykład funkcja może składać się z obliczenia, DMA, kolejnego obliczenia, drugiego DMA i ostatecznego obliczenia. Byłoby to reprezentowane jako async_start, po którym następują async_update i async_done. Async_start wykonałby pierwsze obliczenie w wątku, a następnie uruchomiłby DMA. Async_update czekałby na zakończenie DMA, jeśli jeszcze nie zostało zakończone, a następnie wykonałby drugie obliczenie w funkcji i uruchomiłby drugie DMA. Na koniec async_done czekałby na to ostatnie DMA, a następnie uruchomiłby ostatnie obliczenie, które musi zostać wykonane w wątku i zwróciłby wynik tego ostatecznego obliczenia.
operands są przekazywane bezpośrednio do obliczeń. called_computation to funkcja, która zostanie uruchomiona asynchronicznie. execution_thread to nazwa wątku, w którym zostanie uruchomiona. Wątek główny nazywany jest „main”. Wszystkie wątki mają nazwy.
Zwraca cały stan potrzebny między operacjami asynchronicznymi. Po przypisaniu bufora, wartości zwracane reprezentują przestrzeń potrzebną do przechowywania danych wejściowych, wyników oraz wszelkich plików roboczych potrzebnych lub edytowanych przez operację asynchroniczną.
Atrybuty:
| Atrybut | Typ MLIR | Opis |
|---|---|---|
called_computation | ::mlir::FlatSymbolRefAttr | atrybut odniesienia symbolu płaskiego |
execution_thread | ::mlir::StringAttr | atrybut ciągu |
Operandy:
| Operand | Opis |
|---|---|
inputs | zmiennoprzecinkowy tensor o 4/6/8/16/32/64-bitowym floatie lub wartości logicznej lub 2/4/8/16/32/64-bitowym typie całkowitym lub zespolonym z 32/64-bitowymi elementami float lub skwantyzowanymi wartościami całkowitymi na tensor lub skwantyzowanymi wartościami całkowitymi na oś lub tokenem lub tokenem stablehlo lub zagnieżdżoną krotką z dowolną kombinacją tensorów o 4/6/8/16/32/64-bitowym floatie lub wartościach logicznych lub 2/4/8/16/32/64-bitowym integerze lub zespolonym z 32/64-bitowymi elementami float lub skwantyzowanymi wartościami całkowitymi na tensor lub memref o 4/6/8/16/32/64-bitowym floatie lub wartościach logicznych lub 2/4/8/16/32/64-bitowym integerze lub zespolonym z 32/64-bitowymi elementy zmiennoprzecinkowe lub skwantyzowane wartości całkowite na tensor lub tensor rangowany skwantyzowanych wartości całkowitych na oś lub wartości tokenów |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | async_bundle z dowolną kombinacją tensora rankingowego 4/6/8/16/32/64-bitowego typu float lub bool lub 2/4/8/16/32/64-bitowego typu integer lub typu zespolonego z 32/64-bitowymi elementami float lub wartościami kwantyzowanymi na tensor lub na oś lub wartościami tokenów lub tokenów stablehlo |
mhlo.async_update (mhlo::AsyncUpdateOp)
Operacja AsyncUpdate
Operacja ta jest prywatna dla kompilatora XLA, więc nie ma jeszcze specyfikacji.
Nieformalnie, ta operacja blokuje obliczenia asynchroniczne do momentu wystąpienia bariery synchronizacji. Po wykonaniu operacji zwracana jest wartość bundle .
Więcej informacji znajdziesz w dokumentacji AsyncStart.
Interfejsy: InferTypeOpInterface
Operandy:
| Operand | Opis |
|---|---|
bundle | async_bundle z dowolną kombinacją tensora rankingowego 4/6/8/16/32/64-bitowego typu float lub bool lub 2/4/8/16/32/64-bitowego typu integer lub typu zespolonego z 32/64-bitowymi elementami float lub wartościami kwantyzowanymi na tensor lub na oś lub wartościami tokenów lub tokenów stablehlo |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | async_bundle z dowolną kombinacją tensora rankingowego 4/6/8/16/32/64-bitowego typu float lub bool lub 2/4/8/16/32/64-bitowego typu integer lub typu zespolonego z 32/64-bitowymi elementami float lub wartościami kwantyzowanymi na tensor lub na oś lub wartościami tokenów lub tokenów stablehlo |
mhlo.atan2 (mhlo::Atan2Op)
Operacja Atan2
Składnia:
operation ::= `mhlo.atan2` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Wykonuje operację atan2 na elementach tensora lhs i rhs i generuje tensor result .
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#atan2
Przykład:
%result = mhlo.atan2 %lhs, %rhs : tensor<3xf32>
Cechy: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfejsy: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Operandy:
| Operand | Opis |
|---|---|
lhs | tensor rangowany typu float 4/6/8/16/32/64-bitowego lub typu zespolonego z elementami float 32/64-bitowymi lub skwantyzowanymi wartościami całkowitymi na tensor |
rhs | tensor rangowany typu float 4/6/8/16/32/64-bitowego lub typu zespolonego z elementami float 32/64-bitowymi lub skwantyzowanymi wartościami całkowitymi na tensor |
Wyniki:
| Wynik | Opis |
|---|---|
result | tensor rangowany typu float 4/6/8/16/32/64-bitowego lub typu zespolonego z elementami float 32/64-bitowymi lub skwantyzowanymi wartościami całkowitymi na tensor |
mhlo.atanh (mhlo::AtanhOp)
Operacja Atanh
Składnia:
operation ::= `mhlo.atanh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Wykonuje operację atanh elementarną na tensorze operand i generuje tensor result .
Przykład:
%result = mhlo.atanh %operand : tensor<2x2xf32>
Cechy: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfejsy: InferShapedTypeOpInterface , InferTypeOpInterface
Operandy:
| Operand | Opis |
|---|---|
operand | tensor typu float 4/6/8/16/32/64-bitowego lub typu złożonego z wartościami elementów float 32/64-bitowymi |
Wyniki:
| Wynik | Opis |
|---|---|
result | tensor typu float 4/6/8/16/32/64-bitowego lub typu złożonego z wartościami elementów float 32/64-bitowymi |
mhlo.batch_norm_grad (mhlo::BatchNormGradOp)
Operacja BatchNormGrad
Oblicza gradienty kilku wejść BatchNormTrainingOp, propagując wstecz od grad_output , i generuje tensory grad_operand , grad_scale i grad_offset .
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_grad
Przykład:
%grad_operand, %grad_scale, %grad_offset =
"mhlo.batch_norm_grad"(%operand, %scale, %mean, %variance, %grad_output) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>,
tensor<2x2x2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
Cechy: AlwaysSpeculatableImplTrait , InferTensorType
Interfejsy: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Atrybuty:
| Atrybut | Typ MLIR | Opis |
|---|---|---|
epsilon | ::mlir::FloatAttr | 32-bitowy atrybut float |
feature_index | ::mlir::IntegerAttr | 64-bitowy atrybut liczby całkowitej bez znaku, którego wartość jest nieujemna |
Operandy:
| Operand | Opis |
|---|---|
operand | tensor rankingowy wartości zmiennoprzecinkowych 4/6/8/16/32/64-bitowych |
scale | 1D tensor wartości zmiennoprzecinkowych 4/6/8/16/32/64-bitowych |
mean | 1D tensor wartości zmiennoprzecinkowych 4/6/8/16/32/64-bitowych |
variance | 1D tensor wartości zmiennoprzecinkowych 4/6/8/16/32/64-bitowych |
grad_output | tensor rankingowy wartości zmiennoprzecinkowych 4/6/8/16/32/64-bitowych |
Wyniki:
| Wynik | Opis |
|---|---|
grad_operand | tensor rankingowy wartości zmiennoprzecinkowych 4/6/8/16/32/64-bitowych |
grad_scale | 1D tensor wartości zmiennoprzecinkowych 4/6/8/16/32/64-bitowych |
grad_offset | 1D tensor wartości zmiennoprzecinkowych 4/6/8/16/32/64-bitowych |
mhlo.batch_norm_inference (mhlo::BatchNormInferenceOp)
Operacja BatchNormInference
Normalizuje tensor operand we wszystkich wymiarach, z wyjątkiem wymiaru feature_index , i generuje tensor result .
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_inference
Przykład:
%result = "mhlo.batch_norm_inference"(%operand, %scale, %offset, %mean, %variance) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>, tensor<2xf32>) -> tensor<2x2x2xf32>
Cechy: AlwaysSpeculatableImplTrait , InferTensorType
Interfejsy: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Atrybuty:
| Atrybut | Typ MLIR | Opis |
|---|---|---|
epsilon | ::mlir::FloatAttr | 32-bitowy atrybut float |
feature_index | ::mlir::IntegerAttr | 64-bitowy atrybut liczby całkowitej bez znaku, którego wartość jest nieujemna |
Operandy:
| Operand | Opis |
|---|---|
operand | tensor rankingowy wartości zmiennoprzecinkowych 4/6/8/16/32/64-bitowych |
scale | 1D tensor wartości zmiennoprzecinkowych 4/6/8/16/32/64-bitowych |
offset | 1D tensor wartości zmiennoprzecinkowych 4/6/8/16/32/64-bitowych |
mean | 1D tensor wartości zmiennoprzecinkowych 4/6/8/16/32/64-bitowych |
variance | 1D tensor wartości zmiennoprzecinkowych 4/6/8/16/32/64-bitowych |
Wyniki:
| Wynik | Opis |
|---|---|
result | tensor rankingowy wartości zmiennoprzecinkowych 4/6/8/16/32/64-bitowych |
mhlo.batch_norm_training (mhlo::BatchNormTrainingOp)
Operacja BatchNormTraining
Oblicza średnią i wariancję w wymiarach wsadowych i przestrzennych oraz normalizuje tensor operand dla każdej cechy w wymiarze feature_index i generuje output , tensory batch_mean i batch_var .
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#batch_norm_training
Przykład:
%output, %batch_mean, %batch_var = "mhlo.batch_norm_training"(%operand, %scale, %offset) {
epsilon = 0.0 : f32,
feature_index = 2 : i64
} : (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>) -> (tensor<2x2x2xf32>, tensor<2xf32>, tensor<2xf32>)
Cechy: AlwaysSpeculatableImplTrait , InferTensorType
Interfejsy: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Atrybuty:
| Atrybut | Typ MLIR | Opis |
|---|---|---|
epsilon | ::mlir::FloatAttr | 32-bitowy atrybut float |
feature_index | ::mlir::IntegerAttr | 64-bitowy atrybut liczby całkowitej bez znaku, którego wartość jest nieujemna |
Operandy:
| Operand | Opis |
|---|---|
operand | tensor rankingowy wartości zmiennoprzecinkowych 4/6/8/16/32/64-bitowych |
scale | 1D tensor wartości zmiennoprzecinkowych 4/6/8/16/32/64-bitowych |
offset | 1D tensor wartości zmiennoprzecinkowych 4/6/8/16/32/64-bitowych |
Wyniki:
| Wynik | Opis |
|---|---|
output | tensor rankingowy wartości zmiennoprzecinkowych 4/6/8/16/32/64-bitowych |
batch_mean | 1D tensor wartości zmiennoprzecinkowych 4/6/8/16/32/64-bitowych |
batch_var | 1D tensor wartości zmiennoprzecinkowych 4/6/8/16/32/64-bitowych |
mhlo.bitcast (mhlo::BitcastOp)
Operacja bitcastowa
Składnia:
operation ::= `mhlo.bitcast` operands attr-dict `:` functional-type(operands, results)
Operacja ta jest prywatna dla kompilatora XLA, więc nie ma jeszcze specyfikacji.
Nieformalnie operacja ta zmienia kształt danych wejściowych w taki sposób, że fizyczny układ elementów pozostaje niezmieniony.
Operacja ta wymaga informacji o układzie, aby zrozumieć „fizyczne rozmieszczenie elementów”, a obsługa układu w MHLO jest obecnie w toku.
Przykład:
%0 = mhlo.bitcast %arg0 : (tensor<3x4xf32>) -> tensor<3x4x1xf32>
Cechy: AlwaysSpeculatableImplTrait
Interfejsy: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Operandy:
| Operand | Opis |
|---|---|
operand | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub wartościami całkowitymi skwantyzowanymi na tensor lub na oś |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub wartościami całkowitymi skwantyzowanymi na tensor lub na oś |
mhlo.bitcast_convert (mhlo::BitcastConvertOp)
Operacja BitcastConvert
Składnia:
operation ::= `mhlo.bitcast_convert` operands attr-dict `:` functional-type(operands, results)
Wykonuje operację bitcast na tensorze operand i generuje tensor result , w którym bity całego tensora operand są reinterpretowane przy użyciu typu tensora result .
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#bitcast_convert
Przykład:
%result = mhlo.bitcast_convert %operand : (tensor<2xf32>) -> tensor<2x4xi8>
Cechy: AlwaysSpeculatableImplTrait
Interfejsy: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Operandy:
| Operand | Opis |
|---|---|
operand | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub wartościami całkowitymi skwantyzowanymi na tensor lub na oś |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub wartościami całkowitymi skwantyzowanymi na tensor lub na oś |
mhlo.broadcast (mhlo::BroadcastOp)
Operacja nadawania
Ta operacja jest już poza systemem StableHLO, dlatego nie jest uwzględniona w specyfikacji: https://github.com/openxla/stablehlo/issues/3
Nieformalnie ta operacja wykonuje to samo, co Broadcast XLA: https://www.tensorflow.org/xla/operation_semantics#broadcast
Przykład:
%result = mhlo.broadcast %operand, sizes = [1, 2] : (tensor<3xi32>) -> tensor<1x2x3xi32>
Cechy: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType
Interfejsy: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Atrybuty:
| Atrybut | Typ MLIR | Opis |
|---|---|---|
broadcast_sizes | ::mlir::DenseIntElementsAttr | Atrybut 64-bitowych elementów całkowitych bez znaku |
Operandy:
| Operand | Opis |
|---|---|
operand | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub wartościami całkowitymi skwantyzowanymi na tensor lub na oś |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub wartościami całkowitymi skwantyzowanymi na tensor lub na oś |
mhlo.broadcast_in_dim (mhlo::BroadcastInDimOp)
Operacja BroadcastInDim
Rozszerza wymiary i/lub rangę tensora wejściowego poprzez duplikację danych w tensorze operand i generuje tensor result .
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#broadcast_in_dim
Przykład:
%result = mhlo.broadcast_in_dim %operand, dims = [2, 1] : (tensor<1x3xi32>) -> tensor<2x3x2xi32>
Cechy: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType
Interfejsy: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Atrybuty:
| Atrybut | Typ MLIR | Opis |
|---|---|---|
broadcast_dimensions | ::mlir::DenseIntElementsAttr | Atrybut 64-bitowych elementów całkowitych bez znaku |
Operandy:
| Operand | Opis |
|---|---|
operand | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub wartościami całkowitymi skwantyzowanymi na tensor lub na oś |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | statycznie ukształtowany lub jednowymiarowy tensor o ograniczonym wymiarze 4/6/8/16/32/64-bitowy typu float lub bool lub 2/4/8/16/32/64-bitowy typu całkowitego lub zespolonego z 32/64-bitowymi elementami float lub wartościami całkowitymi skwantyzowanymi na tensor lub na oś |
mhlo.case (mhlo::CaseOp)
Operacja przypadku
Tworzy dane wyjściowe z wykonania dokładnie jednej function z branches w zależności od wartości index .
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#case
Przykład:
%result0, %result1 = "mhlo.case"(%index) ({
mhlo.return %result_branch0, %result_branch0 : tensor<2xi64>, tensor<2xi64>
}, {
mhlo.return %result_branch1, %result_branch1 : tensor<2xi64>, tensor<2xi64>
}) : (tensor<i32>) -> (tensor<2xi64>, tensor<2xi64>)
Cechy: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfejsy: InferTypeOpInterface
Operandy:
| Operand | Opis |
|---|---|
index | tensor 32-bitowych wartości całkowitych bez znaku |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | zmiennoprzecinkowy tensor o 4/6/8/16/32/64-bitowym floatie lub bool lub 2/4/8/16/32/64-bitowym interze lub typie zespolonym z 32/64-bitowymi elementami float lub skwantyzowanymi wartościami całkowitymi na tensor lub tensor o kwantyzowanych wartościach całkowitych na oś lub token |
mhlo.cbrt (mhlo::CbrtOp)
Operacja CBRT
Składnia:
operation ::= `mhlo.cbrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Wykonuje operację pierwiastka sześciennego na tensorze operand i zwraca tensor result .
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cbrt
Przykład:
%result = mhlo.cbrt %operand : tensor<4xf32>
Cechy: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfejsy: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Atrybuty:
| Atrybut | Typ MLIR | Opis |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | Wymagana dokładność dla operacji unarnych. |
Operandy:
| Operand | Opis |
|---|---|
operand | tensor rangowany typu float 4/6/8/16/32/64-bitowego lub typu zespolonego z elementami float 32/64-bitowymi lub skwantyzowanymi wartościami całkowitymi na tensor |
Wyniki:
| Wynik | Opis |
|---|---|
result | tensor rangowany typu float 4/6/8/16/32/64-bitowego lub typu zespolonego z elementami float 32/64-bitowymi lub skwantyzowanymi wartościami całkowitymi na tensor |
mhlo.ceil (mhlo::CeilOp)
Operacja sufitowa
Składnia:
operation ::= `mhlo.ceil` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Wykonuje elementarną funkcję tensora operand i generuje tensor result .
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#ceil
Przykład:
%result = mhlo.ceil %operand : tensor<5xf32>
Cechy: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfejsy: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Operandy:
| Operand | Opis |
|---|---|
operand | tensor rangowany 4/6/8/16/32/64-bitowych wartości zmiennoprzecinkowych lub całkowitych na tensor skwantyzowanych |
Wyniki:
| Wynik | Opis |
|---|---|
result | tensor rangowany 4/6/8/16/32/64-bitowych wartości zmiennoprzecinkowych lub całkowitych na tensor skwantyzowanych |
mhlo.cholesky (mhlo::ColeskyOp)
Operacja Choleskiego
Oblicza rozkład Choleskiego dla zestawu macierzy.
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cholesky
Przykład:
%result = mhlo.cholesky %a, lower = true : tensor<3x3xf32>
Cechy: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType
Interfejsy: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Atrybuty:
| Atrybut | Typ MLIR | Opis |
|---|---|---|
lower | ::mlir::BoolAttr | atrybut bool |
Operandy:
| Operand | Opis |
|---|---|
a | tensor rankingowy typu float 4/6/8/16/32/64-bitowego lub typu złożonego z wartościami elementów float 32/64-bitowymi |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | tensor rankingowy typu float 4/6/8/16/32/64-bitowego lub typu złożonego z wartościami elementów float 32/64-bitowymi |
mhlo.clamp (mhlo::ClampOp)
Operacja zacisku
Składnia:
operation ::= `mhlo.clamp` $min `,` $operand `,` $max attr-dict
`:` custom<SameOperandsAndResultType>(type($min), type($operand), type($max), type($result))
Zaciska każdy element tensora operand pomiędzy wartością minimalną i maksymalną i generuje tensor result .
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#clamp
Przykład:
%result = mhlo.clamp %min, %operand, %max : tensor<3xi32>
Cechy: AlwaysSpeculatableImplTrait , HLO_BroadcastingElementwise , InferTensorType , SameOperandsAndResultElementType
Interfejsy: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Operandy:
| Operand | Opis |
|---|---|
min | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub wartościami całkowitymi skwantyzowanymi na tensor lub na oś |
operand | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub wartościami całkowitymi skwantyzowanymi na tensor lub na oś |
max | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub wartościami całkowitymi skwantyzowanymi na tensor lub na oś |
Wyniki:
| Wynik | Opis |
|---|---|
result | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub wartościami całkowitymi skwantyzowanymi na tensor lub na oś |
mhlo.collective_broadcast (mhlo::CollectiveBroadcastOp)
Operacja CollectiveBroadcast
W obrębie każdej grupy procesów w siatce procesów wyślij wartość tensora operand z procesu źródłowego do procesów docelowych i wygeneruj tensor result .
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_broadcast
Przykład:
%result = "mhlo.collective_broadcast"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<1x2xi64>) -> tensor<1x2xi64>
Cechy: CompatibleOperandsAndResultType
Interfejsy: InferShapedTypeOpInterface , InferTypeOpInterface
Atrybuty:
| Atrybut | Typ MLIR | Opis |
|---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | Atrybut 64-bitowych elementów całkowitych bez znaku |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | dwie 64-bitowe liczby całkowite „uchwyt” i „typ” |
Operandy:
| Operand | Opis |
|---|---|
operand | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub wartościami całkowitymi skwantyzowanymi na tensor lub na oś |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub wartościami całkowitymi skwantyzowanymi na tensor lub na oś |
mhlo.collective_permute (mhlo::CollectivePermuteOp)
Operacja CollectivePermute
W obrębie każdej grupy procesów w siatce procesów wysyła wartość tensora operand z procesu źródłowego do procesu docelowego i generuje tensor result .
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#collective_permute
Przykład:
%result = "mhlo.collective_permute"(%operand) {
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
} : (tensor<4x2xf32>) -> tensor<4x2xf32>
Cechy: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType
Interfejsy: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Atrybuty:
| Atrybut | Typ MLIR | Opis |
|---|---|---|
source_target_pairs | ::mlir::DenseIntElementsAttr | Atrybut 64-bitowych elementów całkowitych bez znaku |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | dwie 64-bitowe liczby całkowite „uchwyt” i „typ” |
Operandy:
| Operand | Opis |
|---|---|
operand | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub wartościami całkowitymi skwantyzowanymi na tensor lub na oś |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub wartościami całkowitymi skwantyzowanymi na tensor lub na oś |
mhlo.compare (mhlo::CompareOp)
Porównaj operację
Składnia:
operation ::= `mhlo.compare` $comparison_direction `,` $lhs `,` $rhs (`,` $compare_type^)?
attr-dict `:` functional-type(operands, results)
Wykonuje porównanie elementarne tensorów lhs i rhs zgodnie z comparison_direction i compare_type i generuje tensor result .
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#compare
Przykład:
%result = mhlo.compare LT, %lhs, %rhs, FLOAT : (tensor<2xf32>, tensor<2xf32>) -> tensor<2xi1>
Cechy: AlwaysSpeculatableImplTrait , Elementwise , InferTensorType , SameOperandsAndResultShape , SameOperandsElementType
Interfejsy: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Efekty: MemoryEffects::Effect{}
Atrybuty:
| Atrybut | Typ MLIR | Opis |
|---|---|---|
comparison_direction | ::mlir::mhlo::AttrKierunkuPorównania | Którą operację porównania wykonać. |
compare_type | ::mlir::mhlo::ComparisonTypeAttr | Jakiego typu porównania użyć. |
Operandy:
| Operand | Opis |
|---|---|
lhs | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub wartościami całkowitymi skwantyzowanymi na tensor lub na oś |
rhs | tensor rangowany 4/6/8/16/32/64-bitowy float lub bool lub 2/4/8/16/32/64-bitowy integer lub typ zespolony z 32/64-bitowymi elementami float lub wartościami całkowitymi skwantyzowanymi na tensor lub na oś |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | tensor rangowany wartości boolowskich |
mhlo.complex (mhlo::ComplexOp)
Złożona operacja
Składnia:
operation ::= `mhlo.complex` operands attr-dict
`:` custom<ComplexOpType>(type($lhs), type($rhs), type($result))
Wykonuje konwersję elementarną na wartość zespoloną z pary wartości rzeczywistych i urojonych, lhs i rhs , i generuje tensor result .
Zobacz: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#complex
Przykład:
%result = mhlo.complex %lhs, %rhs : tensor<2xcomplex<f32>>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape , SameOperandsElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
lhs | ranked tensor of 32/64-bit float values |
rhs | ranked tensor of 32/64-bit float values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of complex type with 32/64-bit float elements values |
mhlo.composite (mhlo::CompositeOp)
Composite operation
Składnia:
operation ::= `mhlo.composite` $name $inputs attr-dict `:` functional-type(operands, results)
Encapsulates an operation made up (composed) of other StableHLO operations, taking inputs and composite_attributes and producing results . The semantics of the op are implemented by the decomposition attribute. The composite op can be replaced with its decomposition without changing program semantics. In cases where inlining the decomposition does not provide the same op semantics, prefer using custom_call .
The version field (defaults to 0 ) is used to denote when a composite's semantics change.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#composite
Przykład:
%results = mhlo.composite "my.op" %arg0, %arg1 {
decomposition = @my_op,
composite_attributes = { my_attribute = "my_value" },
version = 1 : i32
} : (tensor<f32>, tensor<f32>) -> tensor<f32>
Interfaces: SymbolUserOpInterface
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
name | ::mlir::StringAttr | string attribute |
composite_attributes | ::mlir::DictionaryAttr | dictionary of named attribute values |
decomposition | ::mlir::FlatSymbolRefAttr | flat symbol reference attribute |
version | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Operands:
| Operand | Opis |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.concatenate (mhlo::ConcatenateOp)
Concatenate operation
Concatenates a variadic number of tensors in inputs along dimension dimension in the same order as the given arguments and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#concatenate
Przykład:
%result = mhlo.concatenate %input0, %input1, dim = 0 : (tensor<3x2xi64>, tensor<1x2xi64>) -> tensor<4x2xi64>
Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
| Operand | Opis |
|---|---|
val | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.constant (mhlo::ConstantOp)
Constant operation
Produces an output tensor from a constant value .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#constant
Przykład:
%output = mhlo.constant dense<[[0.0, 1.0], [2.0, 3.0]]> : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , ConstantLike
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
value | ::mlir::ElementsAttr | constant vector/tensor attribute |
Wyniki:
| Wynik | Opis |
|---|---|
output | statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.convert (mhlo::ConvertOp)
Convert operation
Składnia:
operation ::= `mhlo.convert` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs an element-wise conversion from one element type to another on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convert
Przykład:
%result = mhlo.convert %operand : (tensor<3xi32>) -> tensor<3xcomplex<f32>>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.convolution (mhlo::ConvolutionOp)
Convolution operation
Składnia:
operation ::= `mhlo.convolution` `(`operands`)`
`dim_numbers` `=` custom<ConvolutionDimensions>($dimension_numbers) `,`
`window` `=` `{` custom<WindowAttributes>($window_strides, $padding,
$lhs_dilation, $rhs_dilation,
$window_reversal) `}`
attr-dict `:` functional-type(operands, results)
Computes dot products between windows of lhs and slices of rhs and produces result .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
Przykład:
%result = "mhlo.convolution"(%lhs, %rhs) {
window_strides = dense<4> : tensor<2xi64>,
padding = dense<0> : tensor<2x2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>) -> tensor<1x2x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
lhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
rhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_reversal | ::mlir::DenseElementsAttr | constant boolean vector/tensor attribute |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | Structure of dimension information for conv op |
feature_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
batch_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
| Operand | Opis |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.copy (mhlo::CopyOp)
Copy operation
Składnia:
operation ::= `mhlo.copy` operands attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation a copy of operand . Depending on the metadata attached to the operation, it can behave quite differently from a no-op.
Przykład:
%0 = mhlo.copy %arg0 : tensor<f32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
cross_program_prefetch_index | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.cosh (mhlo::CoshOp)
Cosh operation
Składnia:
operation ::= `mhlo.cosh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise cosh operation on operand tensor and produces a result tensor.
Przykład:
%result = mhlo.cosh %operand : tensor<2x2xf32>
Traits: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Operands:
| Operand | Opis |
|---|---|
operand | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Wyniki:
| Wynik | Opis |
|---|---|
result | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.cosine (mhlo::CosineOp)
Cosine operation
Składnia:
operation ::= `mhlo.cosine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise cosine operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#cosine
Przykład:
%result = mhlo.cosine %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.count_leading_zeros (mhlo::ClzOp)
Clz operation
Składnia:
operation ::= `mhlo.count_leading_zeros` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise count of the number of leading zero bits in the operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#count_leading_zeros
Przykład:
%result = mhlo.count_leading_zeros %operand : tensor<2x2xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit integer values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.create_token (mhlo::CreateTokenOp)
CreateToken operation
Składnia:
operation ::= `mhlo.create_token` attr-dict `:` type(results)
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as AfterAllOp with 0 inputs: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#after_all
Przykład:
%output = mhlo.create_token : !mhlo.token
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Wyniki:
| Wynik | Opis |
|---|---|
output | znak |
mhlo.cross-replica-sum (mhlo::CrossReplicaSumOp)
CrossReplicaSum operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as AllReduceOp with channel_id = 0 , use_global_device_ids = false and computation implementing addition: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#all_reduce
Przykład:
%result = "mhlo.cross-replica-sum"(%operand) {
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>
} : (tensor<4xf32>) -> tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
replica_groups | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.custom_call (mhlo::CustomCallOp)
CustomCall operation
Składnia:
operation ::= `mhlo.custom_call` custom<CustomCallTarget>($call_target_name) `(` $inputs `)`
attr-dict `:` functional-type(operands, results)
Encapsulates an implementation-defined operation call_target_name that takes inputs and called_computations and produces results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#custom_call
Przykład:
%results = "mhlo.custom_call"(%input0) {
call_target_name = "foo",
has_side_effect = false,
backend_config = "bar",
api_version = 1 : i32,
called_computations = [@foo]
} : (tensor<f32>) -> tensor<f32>
A custom call invokes code external to XLA. The `inputs` are passed to the
external code, and the external code is expected to produce a result of the
given type. The exact mechanism is backend-specific. For example, in the CPU
backend, a call instruction is emitted which targets a symbol with the name
`call_target_name`.
If XLA runtime is enabled for a backend, then custom calls use the runtime
custom call calling convention to call into the external functions. This
calling convention defines an ABI for encoding arguments, attributes and
results.
Depending on the API version there are two ways to pass extra bits of static
information to the external function:
1. For `API_VERSION_TYPED_FFI` custom calls `backend_config` must be a
dictionary attribute, that will be encoded according to the custom call
calling convention and passed to the external function as the attributes
argument. External code is expected to use declarative bindings (see
`xla/runtime/custom_call.h`) to decode them at run time. These custom
calls are only supported if XLA uses XLA runtime.
2. For previous API versions it is the user responsibility to encode extra
bits of static information as a string `backend_config` attribute, and
decode it at run time.
Interfaces: MemoryEffectOpInterface
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
call_target_name | ::mlir::StringAttr | string attribute |
has_side_effect | ::mlir::BoolAttr | bool attribute |
backend_config | ::mlir::Attribute | string attribute or dictionary of named attribute values |
api_version | ::mlir::mhlo::CustomCallApiVersionAttr | Custom call API version |
called_computations | ::mlir::ArrayAttr | flat symbol ref array attribute |
custom_call_schedule | ::mlir::mhlo::CustomCallScheduleAttr | Specifies the desired schedule for the custom-call. |
operand_layouts | ::mlir::ArrayAttr | Array of layout (1D tensor of index type) attributes |
result_layouts | ::mlir::ArrayAttr | Array of layout (1D tensor of index type) attributes |
output_operand_aliases | ::mlir::ArrayAttr | Aliasing attribute for outputs and operands of CustomCall |
Operands:
| Operand | Opis |
|---|---|
inputs | variadic of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token or nested tuple with any combination of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | variadic of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token or nested tuple with any combination of tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or token values |
mhlo.divide (mhlo::DivOp)
Div operation
Składnia:
operation ::= `mhlo.divide` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise division of dividend lhs and divisor rhs tensors and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#divide
Przykład:
%result = mhlo.divide %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.domain (mhlo::DomainOp)
Domain operation
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, these operations are used to group instructions with the same DomainMetadata property. ShardingMetadata is the main use case today to group instructions on the same device. Domain instructions provide two major benefits:
- Prevent unintentionally optimizing instructions across domains.
- Automatically assign the metadata of the instructions created in the domain. Without domain instructions, each HLO optimization pass would have to check and propagate the metadata, which would be easy to miss and also adds complexity to the compiler. Since domain instructions connect two different domains, each domain instruction is associated with two DomainMetadata -- one on the operand side and one on the user side of the domain.
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
kind | ::mlir::mhlo::DomainKindAttr | Kind of domain metatdata attached to an HLO domain. |
entry_metadata | ::mlir::StringAttr | string attribute |
exit_metadata | ::mlir::StringAttr | string attribute |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
mhlo.dot (mhlo::DotOp)
Dot operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as XLA's Dot: https://www.tensorflow.org/xla/operation_semantics#dot
Przykład:
%0 = mhlo.dot %arg0, %arg1 : (tensor<1x2xi32>, tensor<2x1xi32>) -> tensor<1x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
| Operand | Opis |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dot_general (mhlo::DotGeneralOp)
DotGeneral operation
Computes dot products between slices of lhs and slices of rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dot_general
Przykład:
%result = "mhlo.dot_general"(%lhs, %rhs) {
dot_dimension_numbers = #mhlo.dot<
lhs_batching_dimensions = [0],
rhs_batching_dimensions = [0],
lhs_contracting_dimensions = [2],
rhs_contracting_dimensions = [1]
>,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<2x2x2xi32>, tensor<2x2x2xi32>) -> tensor<2x2x2xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
dot_dimension_numbers | ::mlir::mhlo::DotDimensionNumbersAttr | Attribute that models the dimension information for dot. |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
algorithm | ::mlir::mhlo::DotAlgorithmAttr | Attribute that models the algorithm constraints to use for computing dot. |
Operands:
| Operand | Opis |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_broadcast_in_dim (mhlo::DynamicBroadcastInDimOp)
DynamicBroadcastInDim operation
This operation is functionally identical to broadcast_in_dim op, but the result shape is specified dynamically via output_dimensions .
It also accepts optional attributes to express static knowledge about the expanding behavior of dimensions. If not specified, all dimensions are assumed to be possibly expanding. The sets of dimensions that are known to be expanding and the set of dimensions that are known to be non-expanding must be disjoint and they must be a subset of the operand's dimensions.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_broadcast_in_dim
Przykład:
%operand = mhlo.constant dense<[[1, 2, 3]]> : tensor<1x3xi64>
%output_dimensions = mhlo.constant dense<[2, 3, 2]> : tensor<3xi64>
%result = "mhlo.dynamic_broadcast_in_dim"(%operand, %output_dimensions) {
broadcast_dimensions = array<i64: 2, 1>,
known_expanding_dimensions = array<i64: 0>,
known_nonexpanding_dimensions = array<i64: 1>
} : (tensor<1x3xi64>, tensor<3xi64>) -> tensor<2x3x2xi64>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
broadcast_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
known_expanding_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
known_nonexpanding_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
output_dimensions | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_conv (mhlo::DynamicConvOp)
DynamicConv operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as ConvolutionOp except that padding is specified dynamically via d_padding : https://github.com/openxla/stablehlo/blob/main/docs/spec.md#convolution
Przykład:
%result = "mhlo.dynamic_conv"(%lhs, %rhs, %d_padding) {
window_strides = dense<4> : tensor<2xi64>,
lhs_dilation = dense<2> : tensor<2xi64>,
rhs_dilation = dense<1> : tensor<2xi64>,
window_reversal = dense<false> : tensor<2xi1>,
dimension_numbers = #mhlo.conv<[b, 0, 1, f]x[0, 1, i, o]->[b, 0, 1, f]>,
feature_group_count = 1 : i64,
batch_group_count = 1 : i64,
precision_config = [#stablehlo<precision DEFAULT>, #stablehlo<precision DEFAULT>]
} : (tensor<1x4x4x1xi32>, tensor<3x3x1x1xi32>, tensor<2x2xi64>) -> tensor<1x2x2x1xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
lhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
rhs_dilation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_reversal | ::mlir::DenseElementsAttr | constant boolean vector/tensor attribute |
dimension_numbers | ::mlir::mhlo::ConvDimensionNumbersAttr | Structure of dimension information for conv op |
feature_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
batch_group_count | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is positive |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
| Operand | Opis |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
d_padding | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_gather (mhlo::DynamicGatherOp)
DynamicGather operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as GatherOp except that slice_sizes are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
Przykład:
%result = "mhlo.dynamic_gather"(%operand, %start_indices, %slice_sizes) {
dimension_numbers = #mhlo.gather<
offset_dims = [2, 3],
collapsed_slice_dims = [0],
start_index_map = [0, 2],
index_vector_dim = 2>,
indices_are_sorted = false
} : (tensor<3x4x2xi32>, tensor<2x3x2xi64>, tensor<3xi64>) -> tensor<2x3x2x2xi32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Attribute that models the dimension information for gather |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | ranked tensor of 2/4/8/16/32/64-bit integer values |
slice_sizes | statically shaped 1-dimensional integer tensor of 2/4/8/16/32/64-bit integer values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_iota (mhlo::DynamicIotaOp)
DynamicIota operation
This operation is functionally identical to iota op, but the result shape is specified dynamically via output_shape .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_iota
Przykład:
%0 = mhlo.dynamic_iota %arg0, dim = 0 : (tensor<1xindex>) -> tensor<4xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
iota_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
| Operand | Opis |
|---|---|
output_shape | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_pad (mhlo::DynamicPadOp)
DynamicPad operation
Składnia:
operation ::= `mhlo.dynamic_pad` operands attr-dict `:` functional-type(operands, results)
Dynamically Pads the operand , with amount of padding added at low-end/high-end/interior is passed through input tensors.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
padding_value | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
edge_padding_low | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
edge_padding_high | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
interior_padding | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_reshape (mhlo::DynamicReshapeOp)
DynamicReshape operation
Składnia:
operation ::= `mhlo.dynamic_reshape` operands attr-dict `:` functional-type(operands, results)
This operation is functionally identical to reshape op, but the result shape is specified dynamically via output_shape .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_reshape
Przykład:
%output_shape = mhlo.constant dense<[3, 2]> : tensor<2xi64>
%result = mhlo.dynamic_reshape %operand, %output_shape : (tensor<2x3xi64>, tensor<2xi64>) -> tensor<3x2xi64>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
operand | tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
output_shape | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Wyniki:
| Wynik | Opis |
|---|---|
result | tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_slice (mhlo::DynamicSliceOp)
DynamicSlice operation
Extracts a slice from the operand using dynamically-computed starting indices and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_slice
Przykład:
%result = mhlo.dynamic_slice %operand, %start_indices0, %start_indices1, sizes = [2, 2]
: (tensor<4x4xi32>, tensor<i64>, tensor<i64>) -> tensor<2x2xi32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
slice_sizes | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | variadic of 0D tensor of 2/4/8/16/32/64-bit integer values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.dynamic_update_slice (mhlo::DynamicUpdateSliceOp)
DynamicUpdateSlice operation
Składnia:
operation ::= `mhlo.dynamic_update_slice` operands attr-dict `:` functional-type(operands, results)
Produces a result tensor which is equal to the operand tensor except that the slice starting at start_indices is updated with the values in update .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dynamic_update_slice
Przykład:
%result = mhlo.dynamic_update_slice %operand, %update, %start_indices0, %start_indices1
: (tensor<4x4xi32>, tensor<2x2xi32>, tensor<i64>, tensor<i64>) -> tensor<4x4xi32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
update | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | variadic of 0D tensor of 2/4/8/16/32/64-bit integer values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.einsum (mhlo::EinsumOp)
Einsum operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as TF's einsum: https://www.tensorflow.org/api_docs/python/tf/einsum
Przykład:
%result = "mhlo.einsum"(%lhs, %rhs) {
einsum_config = "ab,bc->ac"
} : (tensor<4x16xf32>, tensor<16x4xf32>) -> tensor<4x4xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
einsum_config | ::mlir::StringAttr | string attribute |
Operands:
| Operand | Opis |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.erf (mhlo::ErfOp)
Erf operation
Składnia:
operation ::= `mhlo.erf` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise erf operation on operand tensor and produces a result tensor.
Przykład:
%result = mhlo.erf %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.exponential (mhlo::ExpOp)
Exp operation
Składnia:
operation ::= `mhlo.exponential` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise exponential operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential
Przykład:
%result = mhlo.exponential %operand : tensor<2x2xf64>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.exponential_minus_one (mhlo::Expm1Op)
Expm1 operation
Składnia:
operation ::= `mhlo.exponential_minus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise exponential minus one operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#exponential_minus_one
Przykład:
%result = mhlo.exponential_minus_one %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.fft (mhlo::FftOp)
Fft operation
Performs the forward and inverse Fourier transforms for real and complex inputs/outputs.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#fft
Przykład:
%result = mhlo.fft %operand, type = FFT, length = [4] : (tensor<4xcomplex<f32>>) -> tensor<4xcomplex<f32>>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
fft_type | ::mlir::mhlo::FftTypeAttr | XLA fast fourier transform type. |
fft_length | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.floor (mhlo::FloorOp)
Floor operation
Składnia:
operation ::= `mhlo.floor` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise floor of operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#floor
Przykład:
%result = mhlo.floor %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or per-tensor integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or per-tensor integer quantized values |
mhlo.fusion (mhlo::FusionOp)
Fusion operation
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation consists of a group of basic ops (represented as a region attached to it). It serves as a hint to the backend that it is beneficial to emit the contained ops into a single loop nest or kernel.
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
fusion_kind | ::mlir::mhlo::FusionKindAttr | fusion kind |
output_operand_aliases | ::mlir::ArrayAttr | Aliasing attribute for outputs and operands of Fusion |
Operands:
| Operand | Opis |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
Wyniki:
| Wynik | Opis |
|---|---|
results | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.gather (mhlo::GatherOp)
Gather operation
Gathers slices from operand tensor from offsets specified in start_indices and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#gather
Przykład:
%result = "mhlo.gather"(%operand, %start_indices) {
dimension_numbers = #stablehlo.gather<
offset_dims = [3, 4],
collapsed_slice_dims = [1],
operand_batching_dims = [0],
start_indices_batching_dims = [1],
start_index_map = [2, 1],
index_vector_dim = 3>,
slice_sizes = dense<[0, 2, 2]> : tensor<3xi64>,
indices_are_sorted = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>) -> tensor<2x2x3x2x2xi64>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
dimension_numbers | ::mlir::mhlo::GatherDimensionNumbersAttr | Attribute that models the dimension information for gather |
slice_sizes | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | ranked tensor of 2/4/8/16/32/64-bit integer values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.get_dimension_size (mhlo::GetDimensionSizeOp)
GetDimensionSize operation
Produces the size of the given dimension of the operand .
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_dimension_size
Przykład:
%result = mhlo.get_dimension_size %operand, dim = 1 : (tensor<2x3xf32>) -> tensor<i32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | tensor of 32-bit signless integer values |
mhlo.get_tuple_element (mhlo::GetTupleElementOp)
GetTupleElement operation
Składnia:
operation ::= `mhlo.get_tuple_element` $operand `[` $index `]` attr-dict `:` functional-type(operands, results)
Extracts element at index position of the operand tuple and produces a result .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#get_tuple_element
Przykład:
%result = mhlo.get_tuple_element %operand[0] : (tuple<tensor<2xf32>, tuple<tensor<i32>>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
index | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
Operands:
| Operand | Opis |
|---|---|
operand | nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.if (mhlo::IfOp)
If operation
Produces the output from executing exactly one branch from true_branch or false_branch depending on the value of pred .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#if
Example: %result = "mhlo.if"(%pred) ({ "mhlo.return"(%result_true_branch) : (tensor
Traits: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferTypeOpInterface
Operands:
| Operand | Opis |
|---|---|
pred | ranked tensor of bool values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
mhlo.imag (mhlo::ImagOp)
Imag operation
Składnia:
operation ::= `mhlo.imag` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the imaginary part, element-wise, from the operand and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#imag
Przykład:
%result = mhlo.imag %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.infeed (mhlo::InfeedOp)
Infeed operation
Reads data from the infeed and produces results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#infeed
Przykład:
%results:2 = "mhlo.infeed"(%token) {
infeed_config = ""
} : (!mhlo.token) -> (tensor<3x3x3xi32>, !mhlo.token)
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
infeed_config | ::mlir::StringAttr | string attribute |
layout | ::mlir::ArrayAttr | array attribute |
Operands:
| Operand | Opis |
|---|---|
token | znak |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | variadic of statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token |
mhlo.iota (mhlo::IotaOp)
Iota operation
Fills an output tensor with values in increasing order starting from zero along the iota_dimension dimension.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#iota
Przykład:
%output = mhlo.iota dim = 0 : tensor<4x5xi32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
iota_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Wyniki:
| Wynik | Opis |
|---|---|
output | statically shaped tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.is_finite (mhlo::IsFiniteOp)
IsFinite operation
Składnia:
operation ::= `mhlo.is_finite` $x attr-dict `:` functional-type(operands, results)
Performs element-wise check whether the value in x is finite (ie is neither +Inf, -Inf, nor NaN) and produces a y tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#is_finite
Przykład:
%y = mhlo.is_finite %x : (tensor<7xf32>) -> tensor<7xi1>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
x | ranked tensor of 4/6/8/16/32/64-bit float values |
Wyniki:
| Wynik | Opis |
|---|---|
y | ranked tensor of bool values |
mhlo.log (mhlo::LogOp)
Log operation
Składnia:
operation ::= `mhlo.log` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log
Przykład:
%result = mhlo.log %operand : tensor<2x2xf64>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.log_plus_one (mhlo::Log1pOp)
Log1p operation
Składnia:
operation ::= `mhlo.log_plus_one` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logarithm plus one operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#log_plus_one
Przykład:
%result = mhlo.log_plus_one %operand : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.logistic (mhlo::LogisticOp)
Logistic operation
Składnia:
operation ::= `mhlo.logistic` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise logistic operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#logistic
Przykład:
%result = mhlo.logistic %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.map (mhlo::MapOp)
Map operation
Applies a map function computation to inputs along the dimensions and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#map
Przykład:
%result = "mhlo.map"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.multiply %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
dimensions = dense<[0, 1]> : tensor<2xi64>
} : (tensor<2x2xi32>, tensor<2x2xi32>) -> tensor<2x2xi32>
Traits: InferTensorType , RecursiveMemoryEffects , SameOperandsAndResultShape , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Opis |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.maximum (mhlo::MaxOp)
Max operation
Składnia:
operation ::= `mhlo.maximum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise max operation on tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#maximum
Przykład:
%result = mhlo.maximum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.minimum (mhlo::MinOp)
Min operation
Składnia:
operation ::= `mhlo.minimum` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise min operation on tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#minimum
Przykład:
%result = mhlo.minimum %lhs, %rhs : tensor<4xf32>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.minimum_broadcast_shapes (mhlo::MinimumBroadcastShapesOp)
Minimizes the rank of two or more shapes to be broadcasted
Składnia:
operation ::= `mhlo.minimum_broadcast_shapes` $shapes attr-dict `:` type($shapes) `->` type($results)
Given two or more 1D tensors representing shapes, returns one 1D tensor for each operand, where operand i corresponds to output i .
The returned tensors have the property that they specify a shape which is a reshape of the corresponding input shape, and the broadcasted output shape (using shape::BroadcastOp) of the returned shapes is a reshape of the broadcasted output shape of the input shapes. Among all possibilities with this property, the one is chosen which minimizes the rank of each returned shape.
The general idea of this op is that it can be used for ops which have a broadcasting semantic to operate on shapes with a possibly smaller rank while preserving equivalence of the computed values. After computing the result of the op using reshaped operands, the result can be reshaped to the result that would have been originally computed.
Here is an example with two input shapes:
mhlo.minimum_broadcast_shapes [1, 2, 3, 1, 2, 1],
[1, 1, 1, 2, 3] -> [6, 2, 1], [2, 3]
The broadcasted output shape of the operands is [1, 2, 3, 1, 2, 3], the broadcasted output shape of the outputs is [6, 2, 3]. These two shapes are reshapes of each other, and also each output is a reshape of the corresponding input.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
shapes | variadic of 1D tensor of index values |
Wyniki:
| Wynik | Opis |
|---|---|
results | variadic of 1D tensor of index values |
mhlo.multiply (mhlo::MulOp)
Mul operation
Składnia:
operation ::= `mhlo.multiply` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise product of two tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#multiply
Przykład:
%result = mhlo.multiply %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.negate (mhlo::NegOp)
Neg operation
Składnia:
operation ::= `mhlo.negate` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise negation of operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#negate
Przykład:
%result = mhlo.negate %operand : tensor<2x3xi32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.not (mhlo::NotOp)
Not operation
Składnia:
operation ::= `mhlo.not` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise NOT of tensor operand of type integer and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#not
Przykład:
%result = mhlo.not %operand : tensor<5x3x1xi1>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
mhlo.optimization_barrier (mhlo::OptimizationBarrierOp)
OptimizationBarrier operation
Składnia:
operation ::= `mhlo.optimization_barrier` attr-dict ($operand^ `:` custom<PairwiseOpType>(type($operand), type($result))):(`(` `)`)?
Ensures that the operations that produce the operand are executed before any operations that depend on the result and prevents compiler transformations from moving operations across the barrier. Other than that, the operation is an identity, ie result = operand .
See https://github.com/openxla/stablehlo/blob/main/docs/spec.md#optimization_barrier
Przykład:
%result0, %result1 = mhlo.optimization_barrier %operand0, %operand1 : tensor<f32>, tensor<f32>
Traits: AlwaysSpeculatableImplTrait , HLO_PairwiseSameOperandAndResultType
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
operand | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
Wyniki:
| Wynik | Opis |
|---|---|
result | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token |
mhlo.or (mhlo::OrOp)
Or operation
Składnia:
operation ::= `mhlo.or` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise OR of two tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#or
Przykład:
%result = mhlo.or %lhs, %rhs : tensor<2xi1>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
lhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.outfeed (mhlo::OutfeedOp)
Outfeed operation
Writes inputs to the outfeed and produces a result token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#outfeed
Przykład:
%result = "mhlo.outfeed"(%input0, %token) {
outfeed_config = ""
} : (tensor<3x3x3xi32>, !mhlo.token) -> !mhlo.token
Interfaces: InferTypeOpInterface
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
outfeed_config | ::mlir::StringAttr | string attribute |
Operands:
| Operand | Opis |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
token | znak |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | znak |
mhlo.pad (mhlo::PadOp)
Pad operation
Expands operand by padding around the tensor as well as between the elements of the tensor with the given padding_value .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#pad
Przykład:
%0 = mhlo.pad %arg0, %arg1, low = [0, 1], high = [2, 1], interior = [1, 2]
: (tensor<2x3xi32>, tensor<i32>) -> tensor<5x9xi32>
Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
edge_padding_low | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
edge_padding_high | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
interior_padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
padding_value | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.partition_id (mhlo::PartitionIdOp)
PartitionId operation
Składnia:
operation ::= `mhlo.partition_id` attr-dict `:` type(results)
Produces partition_id of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#partition_id
Przykład:
%result = mhlo.partition_id : tensor<ui32>
Interfaces: InferTypeOpInterface
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 32-bit unsigned integer values |
mhlo.popcnt (mhlo::PopulationCountOp)
PopulationCount operation
Składnia:
operation ::= `mhlo.popcnt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise count of the number of bits set in the operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#popcnt
Przykład:
%result = mhlo.popcnt %operand : tensor<4xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit integer values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.power (mhlo::PowOp)
Pow operation
Składnia:
operation ::= `mhlo.power` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise exponentiation of lhs tensor by rhs tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#power
Przykład:
%result = mhlo.power %lhs, %rhs : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.ragged_dot (mhlo::RaggedDotOp)
Ragged matrix multiplication over a single ragged dimension
This operation takes three tensor args---lhs, rhs, and group_sizes---and a "ragged_dot_dimension_numbers" attribute. Like dot_general, the lhs and rhs are allowed arbitrary batch and contracting dimensions. Additionally, the lhs is required to have one ragged dimension, and the rhs may have at most one group dimension. The op has three modes, depending on the kind of the lhs ragged dimension.
In mode 1, the shape-signature is [b,m,k], [g,b,k,n], [b,g] -> [b,m,n] . Here the ragged dimension is an lhs non-contracting dimension ( m ). The dimensions b and k represent batch and contracting dimensions respectively. The rhs is required to have a group dimension ( g ).
In mode 2, the shape-signature is [b,m,k], [b,k,n], [b,g] -> [g,b,m,n] . Here the ragged dimension is an lhs/rhs contracting dimension ( k ).
In mode 3, the shape-signature is [b,m,k], [b,k,n], [g] -> [b,m,n] . Here the ragged dimension is an lhs/rhs batch dimension ( b ).
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
ragged_dot_dimension_numbers | ::mlir::mhlo::RaggedDotDimensionNumbersAttr | Attribute that models the dimension information for ragged dot. |
precision_config | ::mlir::ArrayAttr | Precision Config attribute |
Operands:
| Operand | Opis |
|---|---|
lhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
group_sizes | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.real (mhlo::RealOp)
Real operation
Składnia:
operation ::= `mhlo.real` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Extracts the real part, element-wise, from the operand and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#real
Przykład:
%result = mhlo.real %operand : (tensor<2xcomplex<f32>>) -> tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.real_dynamic_slice (mhlo::RealDynamicSliceOp)
RealDynamicSlice operation
Składnia:
operation ::= `mhlo.real_dynamic_slice` operands attr-dict `:` functional-type(operands, results)
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as SliceOp except that start_indices , limit_indices and strides are specified dynamically: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
Przykład:
%result = mhlo.real_dynamic_slice %operand,
%start_indices, %limit_indices, %strides
: (tensor<256x?xf32>, tensor<2xindex>, tensor<2xindex>, tensor<2xindex>) -> tensor<256x?xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
start_indices | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
limit_indices | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
strides | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.recv (mhlo::RecvOp)
Recv operation
Receives data from a channel with channel_id and produces results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#recv
Przykład:
%results:2 = "mhlo.recv"(%token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type DEVICE_TO_DEVICE>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 1>,
is_host_transfer = false,
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>
} : (!mhlo.token) -> (tensor<3x4xi32>, !mhlo.token)
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool attribute |
source_target_pairs | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Opis |
|---|---|
token | znak |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | variadic of statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or statically shaped tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token |
mhlo.reduce (mhlo::ReduceOp)
Reduce operation
Applies a reduction function body to inputs and init_values along the dimensions and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce
Przykład:
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
Traits: InferTensorType , RecursiveMemoryEffects , SameVariadicOperandSize , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Opis |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
init_values | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.reduce_precision (mhlo::ReducePrecisionOp)
ReducePrecision operation
Składnia:
operation ::= `mhlo.reduce_precision` $operand `,` `format` `=` custom<ExponentMantissa>($exponent_bits, $mantissa_bits)
attr-dict `:` custom<SameOperandsAndResultType>(type($operand), type($output))
Performs element-wise conversion of operand to another floating-point type that uses exponent_bits and mantissa_bits and back to the original floating-point type and produces an output tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_precision
Przykład:
%output = mhlo.reduce_precision %operand, format = e5m2 : tensor<6xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
exponent_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is positive |
mantissa_bits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Wyniki:
| Wynik | Opis |
|---|---|
output | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.reduce_scatter (mhlo::ReduceScatterOp)
ReduceScatter operation
Within each process group in the process grid, performs reduction, using computations , over the values of the operand tensor from each process, splits the reduction result along scatter_dimension into parts, and scatters the split parts between the processes to produce the result .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_scatter
Przykład:
%result = "mhlo.reduce_scatter"(%operand) ({
^bb0(%arg0: tensor<f32>, %arg1: tensor<f32>):
%0 = mhlo.add %arg0, %arg1 : tensor<f32>
mhlo.return %0 : tensor<f32>
}) {
scatter_dimension = 1 : i64,
replica_groups = dense<[[0, 1]]> : tensor<1x2xi64>,
// channel_id = 0
channel_handle = #mhlo.channel_handle<handle = 0, type = 0>
// use_global_device_ids = false
} : (tensor<2x4xf32>) -> tensor<2x2xf32>
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
scatter_dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
replica_groups | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
use_global_device_ids | ::mlir::UnitAttr | unit attribute |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.reduce_window (mhlo::ReduceWindowOp)
ReduceWindow operation
Applies a reduction function body to windows of inputs and init_values and produces results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reduce_window
Przykład:
%result = "mhlo.reduce_window"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
window_dimensions = dense<[2, 1]> : tensor<2xi64>,
window_strides = dense<[4, 1]> : tensor<2xi64>,
base_dilations = dense<[2, 1]> : tensor<2xi64>,
window_dilations = dense<[3, 1]> : tensor<2xi64>,
padding = dense<[[2, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<3x2xi32>, tensor<i32>) -> tensor<2x2xi32>
Traits: InferTensorType , RecursiveMemoryEffects , SameVariadicOperandSize , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
base_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_dilations | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Opis |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
init_values | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.remainder (mhlo::RemOp)
Rem operation
Składnia:
operation ::= `mhlo.remainder` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise remainder of dividend lhs and divisor rhs tensors and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#remainder
Przykład:
%result = mhlo.remainder %lhs, %rhs : tensor<4xi64>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.replica_id (mhlo::ReplicaIdOp)
ReplicaId operation
Składnia:
operation ::= `mhlo.replica_id` attr-dict `:` type(results)
Produces replica_id of the current process.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#replica_id
Przykład:
%result = mhlo.replica_id : tensor<ui32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 32-bit unsigned integer values |
mhlo.reshape (mhlo::ReshapeOp)
Reshape operation
Składnia:
operation ::= `mhlo.reshape` operands attr-dict `:` functional-type(operands, results)
Performs reshape of operand tensor to a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reshape
Przykład:
%result = mhlo.reshape %operand : (tensor<2xf32>) -> tensor<1x2xf32>
Traits: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
operand | tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | statically shaped or single bounded dimension tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.return (mhlo::ReturnOp)
_This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/425
Informally, this operation serves as a terminator for regions defined by
the StableHLO ops. Non-StableHLO ops, e.g. `func.func`, have their own
terminators, e.g. `func.return`.
Example:
```mlir
%result = "mhlo.reduce"(%input, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
dimensions = dense<1> : tensor<1xi64>
} : (tensor<1x6xi32>, tensor<i32>) -> tensor<1xi32>
```_
Syntax:
```
operation ::= mhlo.return $results attr-dict ( : type($results)^)?
Traits: `AlwaysSpeculatableImplTrait`, `Terminator`
Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`
Effects: `MemoryEffects::Effect{}`
#### Operands:
| Operand | Description |
| :-----: | ----------- |
| `results` | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
### `mhlo.reverse` (mhlo::ReverseOp)
_Reverse operation_
Reverses the order of elements in the `operand` along the specified
`dimensions` and produces a `result` tensor.
See:
<a href="https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse">https://github.com/openxla/stablehlo/blob/main/docs/spec.md#reverse</a>
Example:
```mlir
%result = mhlo.reverse %operand, dims = [1] : tensor<3x2xi32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.rng (mhlo::RngOp)
Rng operation
Generates random numbers using the rng_distribution algorithm and produces a result tensor of a given shape shape .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng
Przykład:
%result = mhlo.rng %a, %b, %shape, distribution = NORMAL : (tensor<i32>, tensor<i32>, tensor<2xi64>) -> tensor<3x3xi32>
Traits: InferTensorType
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
rng_distribution | ::mlir::mhlo::RngDistributionAttr | XLA PRNG distribution to be used. |
Operands:
| Operand | Opis |
|---|---|
a | 0D tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
b | 0D tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
shape | 1D tensor of index or 2/4/8/16/32/64-bit integer values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of bool or 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
mhlo.rng_bit_generator (mhlo::RngBitGeneratorOp)
RngBitGenerator operation
Returns an output filled with uniform random data and an updated output state output_state given an initial state initial_state using the pseudorandom number generator algorithm rng_algorithm .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rng_bit_generator
Przykład:
%output_state, %output = mhlo.rng_bit_generator %initial_state, algorithm = THREE_FRY : (tensor<2xui64>) -> (tensor<2xui64>, tensor<2x2xui64>)
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
rng_algorithm | ::mlir::mhlo::RngAlgorithmAttr | XLA PRNG algorithm to be used. |
Operands:
| Operand | Opis |
|---|---|
initial_state | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
Wyniki:
| Wynik | Opis |
|---|---|
output_state | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
output | statically shaped tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float values |
mhlo.round_nearest_afz (mhlo::RoundOp)
Round operation
Składnia:
operation ::= `mhlo.round_nearest_afz` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties away from zero, on the operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_afz
Przykład:
%result = mhlo.round_nearest_afz %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.round_nearest_even (mhlo::RoundNearestEvenOp)
RoundNearestEven operation
Składnia:
operation ::= `mhlo.round_nearest_even` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise rounding towards the nearest integer, breaking ties towards the even integer, on the operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#round_nearest_even
Przykład:
%result = mhlo.round_nearest_even %operand : tensor<5xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.rsqrt (mhlo::RsqrtOp)
Rsqrt operation
Składnia:
operation ::= `mhlo.rsqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise reciprocal square root operation on operand tensor and produces a result tensor, implementing the rSqrt operation from the IEEE-754 specification.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#rsqrt
Przykład:
%result = mhlo.rsqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.scatter (mhlo::ScatterOp)
Scatter operation
Produces results tensors which are equal to inputs tensors except that several slices specified by scatter_indices are updated with the values updates using update_computation .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#scatter
Przykład:
%result = "mhlo.scatter"(%input, %scatter_indices, %update) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = mhlo.add %arg0, %arg1 : tensor<i32>
mhlo.return %0 : tensor<i32>
}) {
scatter_dimension_numbers = #mhlo.scatter<
update_window_dims = [3, 4],
inserted_window_dims = [1],
input_batching_dims = [0],
scatter_indices_batching_dims = [1],
scatter_dims_to_operand_dims = [2, 1],
index_vector_dim = 3>,
indices_are_sorted = false,
unique_indices = false
} : (tensor<2x3x4x2xi64>, tensor<2x2x3x2xi64>, tensor<2x2x3x2x2xi64>) -> tensor<2x3x4x2xi64>
Traits: RecursiveMemoryEffects , SameVariadicOperandSize
Interfaces: InferTypeOpInterface
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
scatter_dimension_numbers | ::mlir::mhlo::ScatterDimensionNumbersAttr | Attribute that models the dimension information for scatter |
indices_are_sorted | ::mlir::BoolAttr | bool attribute |
unique_indices | ::mlir::BoolAttr | bool attribute |
Operands:
| Operand | Opis |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
scatter_indices | ranked tensor of integer or index values |
updates | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.select (mhlo::SelectOp)
Select operation
Składnia:
operation ::= `mhlo.select` operands attr-dict `:`
custom<SelectOpType>(type($pred), type($on_true), type($on_false), type($result))
Produces a result tensor where each element is selected from on_true or on_false tensor based on the value of the corresponding element of pred .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select
Przykład:
%result = mhlo.select %pred, %on_true, %on_false : tensor<2x2xi1>, tensor<2x2xi32>
Traits: AlwaysSpeculatableImplTrait , HLO_BroadcastingElementwise , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
pred | ranked tensor of bool values |
on_true | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
on_false | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.select_and_scatter (mhlo::SelectAndScatterOp)
SelectAndScatter operation
Scatters the values from the source tensor using scatter based on the outcome of reduce_window of the input tensor using select and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#select_and_scatter
Przykład:
%result = "mhlo.select_and_scatter"(%operand, %source, %init_value) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GE>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %arg1) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0) : (tensor<i32>) -> ()
}) {
window_dimensions = dense<[3, 1]> : tensor<2xi64>,
window_strides = dense<[2, 1]> : tensor<2xi64>,
padding = dense<[[0, 1], [0, 0]]> : tensor<2x2xi64>
} : (tensor<4x2xi32>, tensor<2x2xi32>, tensor<i32>) -> tensor<4x2xi32>
Traits: RecursiveMemoryEffects
Interfaces: InferTypeOpInterface
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
window_dimensions | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
window_strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
padding | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
source | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
init_value | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.send (mhlo::SendOp)
Send operation
Sends inputs to a channel channel_id and produces a result token.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#send
Przykład:
%result = "mhlo.send"(%operand, %token) {
// channel_id = 5 : i64,
// channel_type = #stablehlo<channel_type DEVICE_TO_DEVICE>,
channel_handle = #mhlo.channel_handle<handle = 5, type = 1>,
is_host_transfer = false,
source_target_pairs = dense<[[0, 1], [1, 2]]> : tensor<2x2xi64>
} : (tensor<3x4xi32>, !mhlo.token) -> !mhlo.token
Interfaces: InferTypeOpInterface
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
channel_handle | ::mlir::mhlo::ChannelHandleAttr | two 64-bit integers 'handle' and 'type' |
is_host_transfer | ::mlir::BoolAttr | bool attribute |
source_target_pairs | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Opis |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
token | znak |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | znak |
mhlo.set_dimension_size (mhlo::SetDimensionSizeOp)
SetDimensionSize operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/8
Informally, this operation does the same thing as XLA's SetDimensionSize: https://www.tensorflow.org/xla/operation_semantics#setdimensionsize
Przykład:
%0 = mhlo.set_dimension_size %arg0, %arg1, dim = 1 : (tensor<4x2xf32>, tensor<i32>) -> tensor<4x2xf32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute whose value is non-negative |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
size | tensor of 32-bit signless integer values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.shift_left (mhlo::ShiftLeftOp)
ShiftLeft operation
Składnia:
operation ::= `mhlo.shift_left` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise left-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_left
Przykład:
%result = mhlo.shift_left %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.shift_right_arithmetic (mhlo::ShiftRightArithmeticOp)
ShiftRightArithmetic operation
Składnia:
operation ::= `mhlo.shift_right_arithmetic` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise arithmetic right-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_arithmetic
Przykład:
%result = mhlo.shift_right_arithmetic %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.shift_right_logical (mhlo::ShiftRightLogicalOp)
ShiftRightLogical operation
Składnia:
operation ::= `mhlo.shift_right_logical` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise logical right-shift operation on the lhs tensor by rhs number of bits and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#shift_right_logical
Przykład:
%result = mhlo.shift_right_logical %lhs, %rhs : tensor<6xi8>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer values |
mhlo.sign (mhlo::SignOp)
Sign operation
Składnia:
operation ::= `mhlo.sign` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Returns the sign of the operand element-wise and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sign
Przykład:
%result = mhlo.sign %operand : tensor<7xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 2/4/8/16/32/64-bit signless integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit signless integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.sine (mhlo::SineOp)
Sine operation
Składnia:
operation ::= `mhlo.sine` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise sine operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sine
Przykład:
%result = mhlo.sine %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.sinh (mhlo::SinhOp)
Sinh operation
Składnia:
operation ::= `mhlo.sinh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise sinh operation on operand tensor and produces a result tensor.
Przykład:
%result = mhlo.sinh %operand : tensor<2x2xf32>
Traits: CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Operands:
| Operand | Opis |
|---|---|
operand | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Wyniki:
| Wynik | Opis |
|---|---|
result | tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.slice (mhlo::SliceOp)
Slice operation
Extracts a slice from the operand using statically-computed starting indices and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#slice
Przykład:
%result = "mhlo.slice" (%operand) {
start_indices = dense<[1, 2]> : tensor<2xi64>,
limit_indices = dense<[3, 4]> : tensor<2xi64>,
strides = dense<1> : tensor<2xi64>
} : (tensor<3x4xi64>) -> tensor<2x2xi64>
Traits: AlwaysSpeculatableImplTrait , SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
start_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
limit_indices | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
strides | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.sort (mhlo::SortOp)
Sort operation
Sorts a variadic number of tensors in inputs together, according to a custom comparator , along the given dimension and produces a variadic number of tensors as results .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sort
Przykład:
%result0, %result1 = "mhlo.sort"(%input0, %input1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>, %arg2: tensor<i32>, %arg3: tensor<i32>):
%predicate = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction GT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%predicate) : (tensor<i1>) -> ()
}) {
dimension = 0 : i64,
is_stable = true
} : (tensor<2x3xi32>, tensor<2x3xi32>) -> (tensor<2x3xi32>, tensor<2x3xi32>)
Traits: InferTensorType , RecursiveMemoryEffects , SameOperandsAndResultShape
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
dimension | ::mlir::IntegerAttr | 64-bit signless integer attribute |
is_stable | ::mlir::BoolAttr | bool attribute |
Operands:
| Operand | Opis |
|---|---|
inputs | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.sqrt (mhlo::SqrtOp)
Sqrt operation
Składnia:
operation ::= `mhlo.sqrt` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise square root operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#sqrt
Przykład:
%result = mhlo.sqrt %operand : tensor<2x2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.stochastic_convert (mhlo::StochasticConvertOp)
StochasticConvert operation
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/295
Informally, this operation performs element-wise conversion of values from a bigger type to a smaller one with stochastic rounding using the random number passed in.
Traits: AlwaysSpeculatableImplTrait , Elementwise
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float values |
random | ranked tensor of 2/4/8/16/32/64-bit unsigned integer values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.subtract (mhlo::SubtractOp)
Subtract operation
Składnia:
operation ::= `mhlo.subtract` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise subtraction of two tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#subtract
Przykład:
%result = mhlo.subtract %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
lhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
rhs | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 2/4/8/16/32/64-bit integer or 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.tan (mhlo::TanOp)
Tan operation
Składnia:
operation ::= `mhlo.tan` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
This operation is a work in progress, so it is not yet included in the specification: https://github.com/openxla/stablehlo/issues/954
Informally, this operation returns Tan(operand) element-wise.
Przykład:
%0 = mhlo.tan %arg0 : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.tanh (mhlo::TanhOp)
Tanh operation
Składnia:
operation ::= `mhlo.tanh` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise hyperbolic tangent operation on operand tensor and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tanh
Przykład:
%result = mhlo.tanh %operand : tensor<2xf32>
Traits: AlwaysSpeculatableImplTrait , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
result_accuracy | ::mlir::mhlo::ResultAccuracyAttr | The requested accuracy for unary ops. |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.topk (mhlo::TopKOp)
TopK operation
Składnia:
operation ::= `mhlo.topk` `(`$operand `,` `k` `=` $k (`,` `largest` `=` $largest^)? `)` attr-dict `:`
type($operand) `->` `(`type($values)`,` type($indices)`)`
Returns top k values and their indices, along the last dimension of the operand if largest=true or the bottom k values if largest=false .
See: https://www.tensorflow.org/xla/operation_semantics#top-k
Przykład:
%values, %indices = mhlo.topk(%operand, k=5, largest=true)
: tensor<100xf32> -> (tensor<5xf32>, tensor<5xi32>)
Traits: InferTensorType , RecursiveMemoryEffects
Interfaces: InferShapedTypeOpInterface , InferTypeOpInterface
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
k | ::mlir::IntegerAttr | 64-bit signless integer attribute |
largest | ::mlir::BoolAttr | bool attribute |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
values | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
indices | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.torch_index_select (mhlo::TorchIndexSelectOp)
TorchIndexSelect operation
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/3
Informally, this operation does the same thing as PyTorch's index_select, augmented with support for batch dimensions: https://pytorch.org/docs/stable/generated/torch.index_select.html
The batch_dims attribute specifies the number of major batch dimensions (0 or more) that act like a multidimensional loop over both the operand and the index.
Przykład:
%result = "mhlo.torch_index_select"(%operand, %index) {
dim = 2 : i64,
batch_dims = 1 : i64
} : (tensor<8x128x3072x64xf32>, tensor<8x16x1024xi32>) -> tensor<8x128x16x1024x64xf32>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
dim | ::mlir::IntegerAttr | 64-bit signless integer attribute |
batch_dims | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
index | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.trace (mhlo::TraceOp)
Trace operation
Składnia:
operation ::= `mhlo.trace` $operand `,` $tag attr-dict `:` type($operand)
This operation is on its way out of StableHLO, so it is not included in the specification: https://github.com/openxla/stablehlo/issues/604
It is not used by JAX, PyTorch or TensorFlow, so it looks like we should've classified it as "Private to XLA" and not included it in StableHLO in the first place. With that in mind, its semantics will not be documented here.
Przykład:
mhlo.trace %arg0, "In test code." : tensor<5x1x5xi32>
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
tag | ::mlir::StringAttr | string attribute |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.transpose (mhlo::TransposeOp)
Transpose operation
Permutes the dimensions of operand tensor using permutation and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#transpose
Przykład:
%0 = mhlo.transpose %arg0, dims = [2, 1, 0] : (tensor<1x2x3xi32>) -> tensor<3x2x1xi32>
Traits: AlwaysSpeculatableImplTrait , HLO_CompatibleOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
permutation | ::mlir::DenseIntElementsAttr | 64-bit signless integer elements attribute |
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
mhlo.triangular_solve (mhlo::TriangularSolveOp)
TriangularSolve operation
Solves batches of systems of linear equations with lower or upper triangular coefficient matrices.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#triangular_solve
Przykład:
%result = "mhlo.triangular_solve"(%a, %b) {
left_side = true,
lower = true,
unit_diagonal = false,
transpose_a = #stablehlo<transpose NO_TRANSPOSE>
} : (tensor<3x3xf32>, tensor<3x3xf32>) -> tensor<3x3xf32>
Traits: AlwaysSpeculatableImplTrait , InferTensorType , SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
left_side | ::mlir::BoolAttr | bool attribute |
lower | ::mlir::BoolAttr | bool attribute |
unit_diagonal | ::mlir::BoolAttr | bool attribute |
transpose_a | ::mlir::mhlo::TransposeAttr | Transpose options |
Operands:
| Operand | Opis |
|---|---|
a | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
b | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | ranked tensor of 4/6/8/16/32/64-bit float or complex type with 32/64-bit float elements values |
mhlo.tuple (mhlo::TupleOp)
Tuple operation
Składnia:
operation ::= `mhlo.tuple` $val attr-dict `:` custom<TupleOpType>(type($val), type($result))
Produces a result tuple from values val .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#tuple
Przykład:
%result = mhlo.tuple %val0, %val1 : tuple<tensor<2xf32>, tuple<tensor<i32>>>
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
val | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values or token or nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | nested tuple with any combination of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token values |
mhlo.uniform_dequantize (mhlo::UniformDequantizeOp)
UniformDequantize operation
Składnia:
operation ::= `mhlo.uniform_dequantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of quantized tensor operand to a floating-point tensor result according to the quantization parameters defined by the operand type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_dequantize
Przykład:
%result = mhlo.uniform_dequantize %operand : (tensor<16x16x!quant.uniform<i8:f32, 34.0:16>>) -> tensor<16x16xf32>
Traits: AlwaysSpeculatableImplTrait , Elementwise , InferTensorType , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of per-tensor integer quantized or per-axis integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float values |
mhlo.uniform_quantize (mhlo::UniformQuantizeOp)
UniformQuantize operation
Składnia:
operation ::= `mhlo.uniform_quantize` $operand attr-dict
`:` custom<SameOperandsAndResultType>(type($operand), type($result))
Performs element-wise conversion of floating-point tensor or quantized tensor operand to a quantized tensor result according to the quantization parameters defined by the result type.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#uniform_quantize
Przykład:
%result = mhlo.uniform_quantize %operand : (tensor<16x16xf32>) -> tensor<16x16x!quant.uniform<ui8:f32, 34.0:16>>
Traits: AlwaysSpeculatableImplTrait , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
operand | ranked tensor of 4/6/8/16/32/64-bit float or 2/4/8/16/32-bit uniform quantized signed integer or 2/4/8/16/32-bit uniform quantized per axis signed integer or 2/4/8/16/32-bit uniform quantized unsigned integer or 2/4/8/16/32-bit uniform quantized per axis unsigned integer values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of per-tensor integer quantized or per-axis integer quantized values |
mhlo.while (mhlo::WhileOp)
While operation
Produces the output from executing body function 0 or more times while the cond function outputs true .
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#while
Przykład:
%results0, %results1 = "mhlo.while"(%operand0, %operand1) ({
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.compare"(%arg0, %arg1) {
comparison_direction = #stablehlo<comparison_direction LT>
} : (tensor<i32>, tensor<i32>) -> tensor<i1>
"mhlo.return"(%0) : (tensor<i1>) -> ()
}, {
^bb0(%arg0: tensor<i32>, %arg1: tensor<i32>):
%0 = "mhlo.add"(%arg0, %constant0) : (tensor<i32>, tensor<i32>) -> tensor<i32>
"mhlo.return"(%0, %arg1) : (tensor<i32>, tensor<i32>) -> ()
}) : (tensor<i32>, tensor<i32>) -> (tensor<i32>, tensor<i32>)
Traits: RecursiveMemoryEffects , SingleBlockImplicitTerminator<ReturnOp> , SingleBlock
Interfaces: InferTypeOpInterface , OpAsmOpInterface
Operands:
| Operand | Opis |
|---|---|
operand | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | variadic of ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values or ranked tensor of per-axis integer quantized values or token or memref of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized values |
mhlo.xla.rng_get_and_update_state (mhlo::XlaRngGetAndUpdateStateOp)
XlaRngGetAndUpdateState operation
Składnia:
operation ::= `mhlo.xla.rng_get_and_update_state` attr-dict
This operation is private to the XLA compiler, so it is does not yet have a specification.
Informally, this operation represents the change of the global random number generator state for rng instructions. The global state is incremented by delta and the old state is returned.
The output is currently defined for a single output type. If this changes in the future to support multiple types, lowering to use of a global memref must ensure that a single memref is still used and updated appropriately.
Interfaces: InferTypeOpInterface
Attributes:
| Atrybut | MLIR Type | Opis |
|---|---|---|
delta | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Wyniki:
| Wynik | Opis |
|---|---|
| "anonimowy" | statically shaped tensor of 64-bit unsigned integer values |
mhlo.xor (mhlo::XorOp)
Xor operation
Składnia:
operation ::= `mhlo.xor` $lhs `,` $rhs attr-dict
`:` custom<SameOperandsAndResultType>(type($lhs), type($rhs), type($result))
Performs element-wise XOR of two tensors lhs and rhs and produces a result tensor.
See: https://github.com/openxla/stablehlo/blob/main/docs/spec.md#xor
Przykład:
%result = mhlo.xor %lhs, %rhs : tensor<2xi32>
Traits: AlwaysSpeculatableImplTrait , Commutative , CompatibleOperandsAndResultType , Elementwise , SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable , InferShapedTypeOpInterface , InferTypeOpInterface , NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Operands:
| Operand | Opis |
|---|---|
lhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
rhs | ranked tensor of bool or 2/4/8/16/32/64-bit integer values |
Wyniki:
| Wynik | Opis |
|---|---|
result | ranked tensor of 4/6/8/16/32/64-bit float or bool or 2/4/8/16/32/64-bit integer or complex type with 32/64-bit float elements or per-tensor integer quantized or per-axis integer quantized values |
Atrybuty
ArgResultAliasAttr
Attribute that models the alias relationship of entry function argument
This attribute captures the alias relationship of an MHLO main function argument to one of the results, denoted by resultIndex . The argTupleIndices and resultTupleIndices are used to index into nested tuples in operand and result respectively. If isMustAlias is true then the operand-result pair must alias.
This is meant to be used as an attribute on a function argument in MHLO. For example, in the following code it expresses that %arg1 may alias 0-th result.
func @main(%arg0: tensor<2xf32>, %arg1: tensor<3xf32> {mhlo.result_alias =
mhlo.result_alias<result_index = [2], ...>}
) -> tensor<2xf32>, tensor<3xf32> {
// function body ...
}
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| argTupleIndices | ::llvm::ArrayRef<int64_t> | Wymiar |
| resultIndex | int64_t | |
| resultTupleIndices | ::llvm::ArrayRef<int64_t> | Wymiar |
| isMustAlias | bool |
ChannelHandleAttr
Two 64-bit integers 'handle' and 'type'
Składnia:
#mhlo.channel_handle<
int64_t, # handle
int64_t # type
>
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| uchwyt | int64_t | |
| typ | int64_t |
ComparisonDirectionAttr
Which comparison operation to perform.
Składnia:
#mhlo.comparison_direction<
::mlir::mhlo::ComparisonDirection # value
>
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| wartość | ::mlir::mhlo::ComparisonDirection | an enum of type ComparisonDirection |
ComparisonTypeAttr
Which comparison type to use.
Składnia:
#mhlo.comparison_type<
::mlir::mhlo::ComparisonType # value
>
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| wartość | ::mlir::mhlo::ComparisonType | an enum of type ComparisonType |
ConvDimensionNumbersAttr
Structure of dimension information for conv op
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| inputBatchDimension | int64_t | |
| inputFeatureDimension | int64_t | |
| inputSpatialDimensions | ::llvm::ArrayRef<int64_t> | Wymiar |
| kernelInputFeatureDimension | int64_t | |
| kernelOutputFeatureDimension | int64_t | |
| kernelSpatialDimensions | ::llvm::ArrayRef<int64_t> | Wymiar |
| outputBatchDimension | int64_t | |
| outputFeatureDimension | int64_t | |
| outputSpatialDimensions | ::llvm::ArrayRef<int64_t> | Wymiar |
CrossProgramPrefetchAttr
Argument that is prefetched from another program
Składnia:
#mhlo.cross_program_prefetch<
int64_t, # parameter
::llvm::ArrayRef<int64_t>, # indices
std::optional<int64_t> # offset
>
This attribute captures an argument that is prefetched from another program. For a given CrossProgramPrefetchAttr , parameter tells us which argument of the main function of the module is prefetched, and indices is a shape index telling us what subshape of that argument is prefetched.
A shape has a subshape iff it is a tuple. In that case, the subshape of the tuple by indices is the shape achieved after indexing by each element of indices in turn. For example, the [1,0] subshape of tuple<tuple<token, token>, tuple<tensor<i32>, token>> is tensor<i32> .
An empty value for indices means the whole shape is prefetched.
Na przykład,
module attributes { mhlo.cross_program_prefetch = [ #mhlo.cross_program_prefetch< parameter = 0, indices = [0]> ]} {
func.func @copy(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%0 = "mhlo.copy"(%arg0) {is_cross_program_prefetch}
return %0 : tuple<tensor<2x3xi32>, tensor<i32>>
}
func.func @main(%arg0 : tuple<tensor<2x3xi32>, tensor<i32>>) -> tuple<tensor<2x3xi32>, tensor<i32>> {
%1 = "mhlo.async_start"(%arg0) {called_computation=@copy}
%2 = "mhlo.async_done"(%1) {called_computation=@copy}
return %2 : tuple<tensor<2x3xi32>, tensor<i32>>
}
}
The parameter = 0 tells us that the async copy of the 0 th parameter is a cross_program_prefetch , while the index of [0] tells us that the 0 th element of the tuple is prefetched while the other element of the tuple is not.
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| parametr | int64_t | |
| indeksy | ::llvm::ArrayRef<int64_t> | Wymiar |
| zrównoważyć | std::optional<int64_t> |
CustomCallScheduleAttr
Specifies the desired schedule for the custom-call.
Składnia:
#mhlo.custom_call_schedule<
::mlir::mhlo::CustomCallSchedule # value
>
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| wartość | ::mlir::mhlo::CustomCallSchedule | an enum of type CustomCallSchedule |
DequantizeModeAttr
_Dequantization mode. Only MIN COMBINED is supported.
Składnia:
#mhlo.dequantize_mode<
::mlir::mhlo::DequantizeMode # value
>
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| wartość | ::mlir::mhlo::DequantizeMode | an enum of type DequantizeMode |
DomainKindAttr
Kind of domain metatdata attached to an HLO domain.
Składnia:
#mhlo.kind<
::mlir::mhlo::DomainKind # value
>
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| wartość | ::mlir::mhlo::DomainKind | an enum of type DomainKind |
DotAlgorithmAttr
Attribute that models the algorithm constraints to use for computing dot.
Składnia:
#mhlo.dot_algorithm<
Type, # lhsPrecisionType
Type, # rhsPrecisionType
Type, # accumulationType
int64_t, # lhsComponentCount
int64_t, # rhsComponentCount
int64_t, # numPrimitiveOperations
bool # allowImpreciseAccumulation
>
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| lhsPrecisionType | Type | |
| rhsPrecisionType | Type | |
| accumulationType | Type | |
| lhsComponentCount | int64_t | |
| rhsComponentCount | int64_t | |
| numPrimitiveOperations | int64_t | |
| allowImpreciseAccumulation | bool |
DotDimensionNumbersAttr
Attribute that models the dimension information for dot.
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| lhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | Wymiar |
| rhsBatchingDimensions | ::llvm::ArrayRef<int64_t> | Wymiar |
| lhsContractingDimensions | ::llvm::ArrayRef<int64_t> | Wymiar |
| rhsContractingDimensions | ::llvm::ArrayRef<int64_t> | Wymiar |
FftTypeAttr
XLA fast fourier transform type.
Składnia:
#mhlo.fft_type<
::mlir::mhlo::FftType # value
>
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| wartość | ::mlir::mhlo::FftType | an enum of type FftType |
FusionKindAttr
Fusion kind
Składnia:
#mhlo.fusion_kind<
::mlir::mhlo::FusionKind # value
>
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| wartość | ::mlir::mhlo::FusionKind | an enum of type FusionKind |
GatherDimensionNumbersAttr
Attribute that models the dimension information for gather
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| offsetDims | ::llvm::ArrayRef<int64_t> | Wymiar |
| collapsedSliceDims | ::llvm::ArrayRef<int64_t> | Wymiar |
| operandBatchingDims | ::llvm::ArrayRef<int64_t> | Wymiar |
| startIndicesBatchingDims | ::llvm::ArrayRef<int64_t> | Wymiar |
| startIndexMap | ::llvm::ArrayRef<int64_t> | Wymiar |
| indexVectorDim | int64_t |
OutputOperandAliasAttr
Attribute that models the alias relationship of output and operand of a CustomCall op
Składnia:
#mhlo.output_operand_alias<
::llvm::ArrayRef<int64_t>, # outputTupleIndices
int64_t, # operandIndex
::llvm::ArrayRef<int64_t> # operandTupleIndices
>
This attribute captures the alias relationship of the output to one of the operands for a CustomCall op, denoted by operand_index . The output_tuple_indices and operand_tuple_indices are used to index into output and operand types. These indices lists are empty if the corresponding types are not tuple types, and can be arbitrarily long in case of arbitrarily nested tuple types.
See https://www.tensorflow.org/xla/aliasing
Example when used as array with in mhlo.custom-call:
%0 = "mhlo.custom_call"(%arg0, %arg1) {
// other attributes
output_operand_alias = [
#mhlo.output_operand_alias<output_tuple_indices = [0],
operand_index = 0,
operand_tuple_indices = [1]>
]
} : (tuple<tensor<1x1xf32>, tensor<2x3xf32>>, tensor<5x5xf32>) -> tuple<tensor<2x3xf32>>
The output and the 0th operand are both tuples. The aliasing shows the
relationship between the 0th element in output tuple with the 1st element in
the 0th operand. And both of them are of the same type: tensor<2x3xf32>.
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| outputTupleIndices | ::llvm::ArrayRef<int64_t> | Wymiar |
| operandIndex | int64_t | |
| operandTupleIndices | ::llvm::ArrayRef<int64_t> | Wymiar |
PrecisionAttr
XLA precision for an operand. Has backend specific meaning.
Składnia:
#mhlo.precision<
::mlir::mhlo::Precision # value
>
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| wartość | ::mlir::mhlo::Precision | an enum of type Precision |
RaggedDotDimensionNumbersAttr
Attribute that models the dimension information for ragged dot.
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| dotDimensionNumbers | ::mlir::mhlo::DotDimensionNumbersAttr | Attribute that models the dimension information for dot. |
| lhsRaggedDimensions | ::llvm::ArrayRef<int64_t> | Wymiar |
| rhsGroupDimensions | ::llvm::ArrayRef<int64_t> | Wymiar |
ResultAccuracyAttr
The requested accuracy for unary ops.
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| atol | APFloat | |
| rtol | APFloat | |
| ulps | int64_t | |
| tryb | ::mlir::mhlo::ResultAccuracyModeAttr | XLA result accuracy mode. |
ResultAccuracyModeAttr
XLA result accuracy mode.
Składnia:
#mhlo.result_accuracy_mode<
::mlir::mhlo::ResultAccuracyMode # value
>
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| wartość | ::mlir::mhlo::ResultAccuracyMode | an enum of type ResultAccuracyMode |
RngAlgorithmAttr
XLA PRNG algorithm to be used.
Składnia:
#mhlo.rng_algorithm<
::mlir::mhlo::RngAlgorithm # value
>
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| wartość | ::mlir::mhlo::RngAlgorithm | an enum of type RngAlgorithm |
RngDistributionAttr
XLA PRNG distribution to be used.
Składnia:
#mhlo.rng_distribution<
::mlir::mhlo::RngDistribution # value
>
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| wartość | ::mlir::mhlo::RngDistribution | an enum of type RngDistribution |
ScatterDimensionNumbersAttr
Attribute that models the dimension information for scatter
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| updateWindowDims | ::llvm::ArrayRef<int64_t> | Wymiar |
| insertedWindowDims | ::llvm::ArrayRef<int64_t> | Wymiar |
| inputBatchingDims | ::llvm::ArrayRef<int64_t> | Wymiar |
| scatterIndicesBatchingDims | ::llvm::ArrayRef<int64_t> | Wymiar |
| scatterDimsToOperandDims | ::llvm::ArrayRef<int64_t> | Wymiar |
| indexVectorDim | int64_t |
TransposeAttr
Transpose options
Składnia:
#mhlo.transpose<
::mlir::mhlo::Transpose # value
>
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| wartość | ::mlir::mhlo::Transpose | an enum of type Transpose |
TypeExtensionsAttr
Attribute that extends tensor type with MHLO type properties.
Składnia:
#mhlo.type_extensions<
::llvm::ArrayRef<int64_t> # bounds
>
This attribute is used to extend MLIR tensor type with MHLO tensor specific properties. These properties aren't modeled in the MLIR type. This attribute is set in the encoding field of the tensor type.
See HLO_BoundedAttrInterface for documentation for bounds .
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| miedza | ::llvm::ArrayRef<int64_t> |
Typy
AsyncBundleType
Opaque collection of other types
Składnia:
!mhlo.async_bundle<
::llvm::ArrayRef<Type> # types
>
Parameters:
| Parametr | C++ type | Opis |
|---|---|---|
| types | ::llvm::ArrayRef<Type> |
Enums
ComparisonDirection
Which comparison operation to perform.
Sprawy:
| Symbol | Wartość | Smyczkowy |
|---|---|---|
| EQ | 0 | EQ |
| NE | 1 | NE |
| GE | 2 | GE |
| GT | 3 | GT |
| LE | 4 | LE |
| LT | 5 | LT |
ComparisonType
Which comparison type to use.
Sprawy:
| Symbol | Wartość | Smyczkowy |
|---|---|---|
| NOTYPE | 0 | NOTYPE |
| PLATFORMA | 1 | PLATFORMA |
| TOTALORDER | 2 | TOTALORDER |
| SIGNED | 3 | SIGNED |
| UNSIGNED | 4 | UNSIGNED |
CustomCallApiVersion
Custom call API version
Sprawy:
| Symbol | Wartość | Smyczkowy |
|---|---|---|
| API_VERSION_UNSPECIFIED | 0 | API_VERSION_UNSPECIFIED |
| API_VERSION_ORIGINAL | 1 | API_VERSION_ORIGINAL |
| API_VERSION_STATUS_RETURNING | 2 | API_VERSION_STATUS_RETURNING |
| API_VERSION_STATUS_RETURNING_UNIFIED | 3 | API_VERSION_STATUS_RETURNING_UNIFIED |
| API_VERSION_TYPED_FFI | 4 | API_VERSION_TYPED_FFI |
CustomCallSchedule
Specifies the desired schedule for the custom-call.
Sprawy:
| Symbol | Wartość | Smyczkowy |
|---|---|---|
| NIC | 0 | NIC |
| NAJNOWSZY | 1 | NAJNOWSZY |
| EARLIEST | 2 | EARLIEST |
DequantizeMode
_Dequantization mode. Only MIN COMBINED is supported.
Sprawy:
| Symbol | Wartość | Smyczkowy |
|---|---|---|
| MIN_COMBINED | 0 | MIN_COMBINED |
DomainKind
Kind of domain metatdata attached to an HLO domain.
Sprawy:
| Symbol | Wartość | Smyczkowy |
|---|---|---|
| sharding | 0 | sharding |
FftType
XLA fast fourier transform type.
Sprawy:
| Symbol | Wartość | Smyczkowy |
|---|---|---|
| FFT | 0 | FFT |
| IFFT | 1 | IFFT |
| RFFT | 2 | RFFT |
| IRFFT | 3 | IRFFT |
FusionKind
Fusion kind
Sprawy:
| Symbol | Wartość | Smyczkowy |
|---|---|---|
| kLoop | 0 | kLoop |
| kInput | 1 | kInput |
| kOutput | 2 | kOutput |
| kCustom | 3 | kCustom |
Precyzja
XLA precision for an operand. Has backend specific meaning.
Sprawy:
| Symbol | Wartość | Smyczkowy |
|---|---|---|
| DOMYŚLNY | 0 | DOMYŚLNY |
| WYSOKI | 1 | WYSOKI |
| HIGHEST | 2 | HIGHEST |
ResultAccuracyMode
XLA result accuracy mode.
Sprawy:
| Symbol | Wartość | Smyczkowy |
|---|---|---|
| DOMYŚLNY | 0 | DOMYŚLNY |
| HIGHEST | 1 | HIGHEST |
| TOLERANCJA | 2 | TOLERANCJA |
RngAlgorithm
XLA PRNG algorithm to be used.
Sprawy:
| Symbol | Wartość | Smyczkowy |
|---|---|---|
| DOMYŚLNY | 0 | DOMYŚLNY |
| THREE_FRY | 1 | THREE_FRY |
| PHILOX | 2 | PHILOX |
RngDistribution
XLA PRNG distribution to be used.
Sprawy:
| Symbol | Wartość | Smyczkowy |
|---|---|---|
| MUNDUR | 1 | MUNDUR |
| NORMALNA | 2 | NORMALNA |
Transponować
Transpose options
Sprawy:
| Symbol | Wartość | Smyczkowy |
|---|---|---|
| TRANSPOSE_INVALID | 0 | TRANSPOSE_INVALID |
| NO_TRANSPOSE | 1 | NO_TRANSPOSE |
| TRANSPONOWAĆ | 2 | TRANSPONOWAĆ |
| ADJOINT | 3 | ADJOINT |