Missed TensorFlow World? Check out the recap. Learn more

nsl.configs.DecayConfig

View source on GitHub

Class DecayConfig

Contains configuration for decaying a value during training.

Attributes:

  • decay_steps: A scalar int32 or int64 Tensor or a Python number that specifies the decay frequency, specied in units of training steps. Must be positive.
  • decay_rate: A scalar float32 or float64 Tensor or a Python number. Defaults to 0.96.
  • min_value: minimal acceptable value after applying decay. Defaults to 0.0.
  • decay_type: Type of decay function to apply. Defaults to nsl.configs.DecayType.EXPONENTIAL_DECAY.

__init__

__init__(
    decay_steps,
    decay_rate=attr_dict['decay_rate'].default,
    min_value=attr_dict['min_value'].default,
    decay_type=nsl.configs.DecayType.EXPONENTIAL_DECAY
)

Initialize self. See help(type(self)) for accurate signature.

Methods

__eq__

__eq__(other)

Return self==value.

__ge__

__ge__(other)

Automatically created by attrs.

__gt__

__gt__(other)

Automatically created by attrs.

__le__

__le__(other)

Automatically created by attrs.

__lt__

__lt__(other)

Automatically created by attrs.

__ne__

__ne__(other)

Check equality and either forward a NotImplemented or return the result negated.