Sistemas de recomendações de ponta a ponta.

import tensorflow_datasets as tfds
import tensorflow_recommenders as tfrs

# Ratings data.
ratings = tfds.load('movie_lens/100k-ratings', split="train")
# Features of all the available movies.
movies = tfds.load('movie_lens/100k-movies', split="train")

# Select the basic features.
ratings = ratings.map(lambda x: {
  "movie_id": tf.strings.to_number(x["movie_id"]),
  "user_id": tf.strings.to_number(x["user_id"])
  })
movies = movies.map(lambda x: tf.strings.to_number(x["movie_id"]))

# Build a model.
class Model(tfrs.Model):

  def __init__(self):
    super().__init__()

    # Set up user representation.
    self.user_model = tf.keras.layers.Embedding(
    input_dim=2000, output_dim=64)
    # Set up movie representation.
    self.item_model = tf.keras.layers.Embedding(
    input_dim=2000, output_dim=64)
    # Set up a retrieval task and evaluation metrics over the
    # entire dataset of candidates.
    self.task = tfrs.tasks.RetrievalTask(
      corpus_metrics=tfrs.metrics.FactorizedTopK(
        candidates=movies.batch(128).map(self.item_model)
      )
    )

  def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor:

    user_embeddings = self.user_model(features["user_id"])
    movie_embeddings = self.item_model(features["movie_id"])

    return self.task(user_embeddings, movie_embeddings)

  model = Model()
  model.compile(optimizer=tf.keras.optimizers.Adagrad(0.5))

  # Randomly shuffle data and split between train and test.
  tf.random.set_seed(42)
  shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)

  train = shuffled.take(80_000)
  test = shuffled.skip(80_000).take(20_000)

  # Train.
  model.fit(train.batch(4096), epochs=5)

  # Evaluate.
  model.evaluate(test.batch(4096), return_dict=True)

Executar em um notebook
A TensorFlow Recommenders é uma biblioteca para criar modelos de sistema de recomendações.
Ela ajuda com o fluxo de trabalho completo da criação de um sistema de recomendações: preparação de dados, elaboração de modelos, treinamento, avaliação e implantação.
A biblioteca é criada com base na Keras, e o objetivo é ter uma curva de aprendizado suave e, ao mesmo tempo, proporcionar flexibilidade para criar modelos complexos. Para ver a Referência da API, consulte a documentação dela.