Ver en TensorFlow.org | Ejecutar en Google Colab | Ver en GitHub | Descargar cuaderno | Ver modelo TF Hub |
En este tutorial, aprenderá cómo utilizar indicadores Equidad para evaluar incrustaciones de TF Hub . Este portátil utiliza el Comentarios Civil conjunto de datos .
Configuración
Instale las bibliotecas necesarias.
!pip install -q -U pip==20.2
!pip install fairness-indicators \
"absl-py==0.12.0" \
"pyarrow==2.0.0" \
"apache-beam==2.34.0" \
"avro-python3==1.9.1"
Importe otras bibliotecas requeridas.
import os
import tempfile
import apache_beam as beam
from datetime import datetime
import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_model_analysis as tfma
from tensorflow_model_analysis.addons.fairness.view import widget_view
from tensorflow_model_analysis.addons.fairness.post_export_metrics import fairness_indicators
from fairness_indicators import example_model
from fairness_indicators.tutorial_utils import util
ERROR: Traceback (most recent call last): File "/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/apache_beam/io/gcp/bigquery.py", line 341, in <module> import google.cloud.bigquery_storage_v1 as bq_storage ModuleNotFoundError: No module named 'google.cloud.bigquery_storage_v1'
conjunto de datos
En este cuaderno, se trabaja con la Civil Comentarios conjunto de datos que contiene aproximadamente 2 millones de comentarios públicos hechos públicos por el Civil Comentarios plataforma en 2017 para la investigación en curso. Este esfuerzo fue patrocinado por Jigsaw, que ha organizado concursos en Kaggle para ayudar a clasificar los comentarios tóxicos y minimizar el sesgo no deseado del modelo.
Cada comentario de texto individual en el conjunto de datos tiene una etiqueta de toxicidad, siendo la etiqueta 1 si el comentario es tóxico y 0 si el comentario no es tóxico. Dentro de los datos, un subconjunto de comentarios está etiquetado con una variedad de atributos de identidad, incluidas categorías de género, orientación sexual, religión y raza o etnia.
preparar los datos
TensorFlow analiza las características de los datos mediante tf.io.FixedLenFeature
y tf.io.VarLenFeature
. Mapee la función de entrada, la función de salida y todas las demás funciones de corte de interés.
BASE_DIR = tempfile.gettempdir()
# The input and output features of the classifier
TEXT_FEATURE = 'comment_text'
LABEL = 'toxicity'
FEATURE_MAP = {
# input and output features
LABEL: tf.io.FixedLenFeature([], tf.float32),
TEXT_FEATURE: tf.io.FixedLenFeature([], tf.string),
# slicing features
'sexual_orientation': tf.io.VarLenFeature(tf.string),
'gender': tf.io.VarLenFeature(tf.string),
'religion': tf.io.VarLenFeature(tf.string),
'race': tf.io.VarLenFeature(tf.string),
'disability': tf.io.VarLenFeature(tf.string)
}
IDENTITY_TERMS = ['gender', 'sexual_orientation', 'race', 'religion', 'disability']
De manera predeterminada, la computadora portátil descarga una versión preprocesada de este conjunto de datos, pero puede usar el conjunto de datos original y volver a ejecutar los pasos de procesamiento si lo desea.
En el conjunto de datos original, cada comentario está etiquetado con el porcentaje de evaluadores que creían que un comentario corresponde a una identidad particular. Por ejemplo, un comentario puede ser etiquetado con la siguiente: { male: 0.3, female: 1.0, transgender: 0.0, heterosexual: 0.8, homosexual_gay_or_lesbian: 1.0 }
.
El paso de procesamiento agrupa la identidad por categoría (género, orientación_sexual, etc.) y elimina las identidades con una puntuación inferior a 0,5. Entonces, el ejemplo anterior se convertiría en el siguiente: de evaluadores que creían que un comentario corresponde a una identidad particular. Por ejemplo, el comentario anterior sería etiquetado con la siguiente: { gender: [female], sexual_orientation: [heterosexual, homosexual_gay_or_lesbian] }
Descargue el conjunto de datos.
download_original_data = False
if download_original_data:
train_tf_file = tf.keras.utils.get_file('train_tf.tfrecord',
'https://storage.googleapis.com/civil_comments_dataset/train_tf.tfrecord')
validate_tf_file = tf.keras.utils.get_file('validate_tf.tfrecord',
'https://storage.googleapis.com/civil_comments_dataset/validate_tf.tfrecord')
# The identity terms list will be grouped together by their categories
# (see 'IDENTITY_COLUMNS') on threshold 0.5. Only the identity term column,
# text column and label column will be kept after processing.
train_tf_file = util.convert_comments_data(train_tf_file)
validate_tf_file = util.convert_comments_data(validate_tf_file)
else:
train_tf_file = tf.keras.utils.get_file('train_tf_processed.tfrecord',
'https://storage.googleapis.com/civil_comments_dataset/train_tf_processed.tfrecord')
validate_tf_file = tf.keras.utils.get_file('validate_tf_processed.tfrecord',
'https://storage.googleapis.com/civil_comments_dataset/validate_tf_processed.tfrecord')
Downloading data from https://storage.googleapis.com/civil_comments_dataset/train_tf_processed.tfrecord 488161280/488153424 [==============================] - 2s 0us/step 488169472/488153424 [==============================] - 2s 0us/step Downloading data from https://storage.googleapis.com/civil_comments_dataset/validate_tf_processed.tfrecord 324943872/324941336 [==============================] - 9s 0us/step 324952064/324941336 [==============================] - 9s 0us/step
Crear una canalización de análisis de modelos de TensorFlow
La biblioteca Indicadores Fairness opera sobre Modelo de Análisis TensorFlow (TFMA) modelos . Los modelos TFMA envuelven modelos TensorFlow con funcionalidad adicional para evaluar y visualizar sus resultados. La evaluación real se produce en el interior de una tubería de Apache Beam .
Los pasos que sigue para crear una canalización TFMA son:
- Construir un modelo de TensorFlow
- Cree un modelo TFMA sobre el modelo TensorFlow
- Ejecute el análisis del modelo en un orquestador. El modelo de ejemplo de este cuaderno utiliza Apache Beam como orquestador.
def embedding_fairness_result(embedding, identity_term='gender'):
model_dir = os.path.join(BASE_DIR, 'train',
datetime.now().strftime('%Y%m%d-%H%M%S'))
print("Training classifier for " + embedding)
classifier = example_model.train_model(model_dir,
train_tf_file,
LABEL,
TEXT_FEATURE,
FEATURE_MAP,
embedding)
# Create a unique path to store the results for this embedding.
embedding_name = embedding.split('/')[-2]
eval_result_path = os.path.join(BASE_DIR, 'eval_result', embedding_name)
example_model.evaluate_model(classifier,
validate_tf_file,
eval_result_path,
identity_term,
LABEL,
FEATURE_MAP)
return tfma.load_eval_result(output_path=eval_result_path)
Ejecute TFMA e indicadores de equidad
Métricas de indicadores de equidad
Algunas de las métricas disponibles con los indicadores de equidad son:
- Tasa negativa, Tasa de falsos negativos (FNR) y Tasa de verdaderos negativos (TNR)
- Tasa de positivos, tasa de falsos positivos (FPR) y tasa de verdaderos positivos (TPR)
- Exactitud
- Precisión y recuperación
- AUC de recuperación de precisión
- ABC de la República de China
incrustaciones de texto
TF-Hub ofrece varias incrustaciones de texto. Estas incrustaciones servirán como columna de características para los diferentes modelos. Este tutorial utiliza las siguientes incrustaciones:
- random-nnlm-en-dim128 : incrustaciones de texto al azar, esto sirve como un punto de partida conveniente.
- nnlm-en-dim128 : un texto basado en la incorporación de un neuronal probabilística del modelo de lenguaje .
- universales de la frase-codificador : un texto incrustación basa en universal Sentencia del codificador .
Resultados del indicador de equidad
Indicadores de equidad de cómputo con el embedding_fairness_result
tubería, y luego convertir los resultados en la imparcialidad Indicador de interfaz de usuario con flash widget_view.render_fairness_indicator
para todas las inmersiones anteriores.
NNLM aleatorio
eval_result_random_nnlm = embedding_fairness_result('https://tfhub.dev/google/random-nnlm-en-dim128/1')
Training classifier for https://tfhub.dev/google/random-nnlm-en-dim128/1 INFO:tensorflow:Using default config. INFO:tensorflow:Using default config. INFO:tensorflow:Using config: {'_model_dir': '/tmp/train/20220107-182244', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} INFO:tensorflow:Using config: {'_model_dir': '/tmp/train/20220107-182244', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:397: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:397: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Saver not created because there are no variables in the graph to restore 2022-01-07 18:22:54.196242: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 26 into an existing graph with producer version 987. Shape inference will have run different parts of the graph with different producer versions. INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/canned/head.py:400: NumericColumn._get_dense_tensor (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/canned/head.py:400: NumericColumn._get_dense_tensor (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/feature_column/feature_column.py:2188: NumericColumn._transform_feature (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/feature_column/feature_column.py:2188: NumericColumn._transform_feature (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/adagrad.py:139: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/adagrad.py:139: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Saving checkpoints for 0 into /tmp/train/20220107-182244/model.ckpt. INFO:tensorflow:Saving checkpoints for 0 into /tmp/train/20220107-182244/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:loss = 60.23522, step = 0 INFO:tensorflow:loss = 60.23522, step = 0 INFO:tensorflow:global_step/sec: 78.2958 INFO:tensorflow:global_step/sec: 78.2958 INFO:tensorflow:loss = 67.36491, step = 100 (1.279 sec) INFO:tensorflow:loss = 67.36491, step = 100 (1.279 sec) INFO:tensorflow:global_step/sec: 85.8245 INFO:tensorflow:global_step/sec: 85.8245 INFO:tensorflow:loss = 57.875557, step = 200 (1.165 sec) INFO:tensorflow:loss = 57.875557, step = 200 (1.165 sec) INFO:tensorflow:global_step/sec: 83.7495 INFO:tensorflow:global_step/sec: 83.7495 INFO:tensorflow:loss = 61.091763, step = 300 (1.194 sec) INFO:tensorflow:loss = 61.091763, step = 300 (1.194 sec) INFO:tensorflow:global_step/sec: 83.0013 INFO:tensorflow:global_step/sec: 83.0013 INFO:tensorflow:loss = 62.251183, step = 400 (1.205 sec) INFO:tensorflow:loss = 62.251183, step = 400 (1.205 sec) INFO:tensorflow:global_step/sec: 83.4782 INFO:tensorflow:global_step/sec: 83.4782 INFO:tensorflow:loss = 56.21132, step = 500 (1.198 sec) INFO:tensorflow:loss = 56.21132, step = 500 (1.198 sec) INFO:tensorflow:global_step/sec: 87.0099 INFO:tensorflow:global_step/sec: 87.0099 INFO:tensorflow:loss = 57.211937, step = 600 (1.149 sec) INFO:tensorflow:loss = 57.211937, step = 600 (1.149 sec) INFO:tensorflow:global_step/sec: 86.7988 INFO:tensorflow:global_step/sec: 86.7988 INFO:tensorflow:loss = 62.16255, step = 700 (1.152 sec) INFO:tensorflow:loss = 62.16255, step = 700 (1.152 sec) INFO:tensorflow:global_step/sec: 88.1099 INFO:tensorflow:global_step/sec: 88.1099 INFO:tensorflow:loss = 58.081688, step = 800 (1.135 sec) INFO:tensorflow:loss = 58.081688, step = 800 (1.135 sec) INFO:tensorflow:global_step/sec: 85.3134 INFO:tensorflow:global_step/sec: 85.3134 INFO:tensorflow:loss = 57.763985, step = 900 (1.172 sec) INFO:tensorflow:loss = 57.763985, step = 900 (1.172 sec) INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1000... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1000... INFO:tensorflow:Saving checkpoints for 1000 into /tmp/train/20220107-182244/model.ckpt. INFO:tensorflow:Saving checkpoints for 1000 into /tmp/train/20220107-182244/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1000... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1000... INFO:tensorflow:Loss for final step: 59.963802. INFO:tensorflow:Loss for final step: 59.963802. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/eval_saved_model/encoding.py:132: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/eval_saved_model/encoding.py:132: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Saver not created because there are no variables in the graph to restore 2022-01-07 18:23:11.033169: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 26 into an existing graph with producer version 987. Shape inference will have run different parts of the graph with different producer versions. INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/canned/head.py:640: auc (from tensorflow.python.ops.metrics_impl) is deprecated and will be removed in a future version. Instructions for updating: The value of AUC returned by this may race with the update so this is deprecated. Please use tf.keras.metrics.AUC instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/canned/head.py:640: auc (from tensorflow.python.ops.metrics_impl) is deprecated and will be removed in a future version. Instructions for updating: The value of AUC returned by this may race with the update so this is deprecated. Please use tf.keras.metrics.AUC instead. WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Signatures INCLUDED in export for Classify: None INFO:tensorflow:Signatures INCLUDED in export for Classify: None INFO:tensorflow:Signatures INCLUDED in export for Regress: None INFO:tensorflow:Signatures INCLUDED in export for Regress: None INFO:tensorflow:Signatures INCLUDED in export for Predict: None INFO:tensorflow:Signatures INCLUDED in export for Predict: None INFO:tensorflow:Signatures INCLUDED in export for Train: None INFO:tensorflow:Signatures INCLUDED in export for Train: None INFO:tensorflow:Signatures INCLUDED in export for Eval: ['eval'] INFO:tensorflow:Signatures INCLUDED in export for Eval: ['eval'] WARNING:tensorflow:Export includes no default signature! WARNING:tensorflow:Export includes no default signature! INFO:tensorflow:Restoring parameters from /tmp/train/20220107-182244/model.ckpt-1000 INFO:tensorflow:Restoring parameters from /tmp/train/20220107-182244/model.ckpt-1000 INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets written to: /tmp/tfma_eval_model/temp-1641579790/assets INFO:tensorflow:Assets written to: /tmp/tfma_eval_model/temp-1641579790/assets INFO:tensorflow:SavedModel written to: /tmp/tfma_eval_model/temp-1641579790/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tfma_eval_model/temp-1641579790/saved_model.pb WARNING:absl:Tensorflow version (2.8.0-rc0) found. Note that TFMA support for TF 2.0 is currently in beta WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features. WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/eval_saved_model/load.py:164: load (from tensorflow.python.saved_model.loader_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.loader.load or tf.compat.v1.saved_model.load. There will be a new function for importing SavedModels in Tensorflow 2.0. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/eval_saved_model/load.py:164: load (from tensorflow.python.saved_model.loader_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.loader.load or tf.compat.v1.saved_model.load. There will be a new function for importing SavedModels in Tensorflow 2.0. INFO:tensorflow:Restoring parameters from /tmp/tfma_eval_model/1641579790/variables/variables INFO:tensorflow:Restoring parameters from /tmp/tfma_eval_model/1641579790/variables/variables WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/eval_saved_model/graph_ref.py:184: get_tensor_from_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.get_tensor_from_tensor_info or tf.compat.v1.saved_model.get_tensor_from_tensor_info. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/eval_saved_model/graph_ref.py:184: get_tensor_from_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.get_tensor_from_tensor_info or tf.compat.v1.saved_model.get_tensor_from_tensor_info. WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:107: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version. Instructions for updating: Use eager execution and: `tf.data.TFRecordDataset(path)` WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:107: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version. Instructions for updating: Use eager execution and: `tf.data.TFRecordDataset(path)`
widget_view.render_fairness_indicator(eval_result=eval_result_random_nnlm)
FairnessIndicatorViewer(slicingMetrics=[{'sliceValue': 'Overall', 'slice': 'Overall', 'metrics': {'post_export…
NNLM
eval_result_nnlm = embedding_fairness_result('https://tfhub.dev/google/nnlm-en-dim128/1')
Training classifier for https://tfhub.dev/google/nnlm-en-dim128/1 INFO:tensorflow:Using default config. INFO:tensorflow:Using default config. INFO:tensorflow:Using config: {'_model_dir': '/tmp/train/20220107-182524', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} INFO:tensorflow:Using config: {'_model_dir': '/tmp/train/20220107-182524', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Saver not created because there are no variables in the graph to restore 2022-01-07 18:25:24.785154: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 26 into an existing graph with producer version 987. Shape inference will have run different parts of the graph with different producer versions. INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Saving checkpoints for 0 into /tmp/train/20220107-182524/model.ckpt. INFO:tensorflow:Saving checkpoints for 0 into /tmp/train/20220107-182524/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:loss = 58.637047, step = 0 INFO:tensorflow:loss = 58.637047, step = 0 INFO:tensorflow:global_step/sec: 75.6907 INFO:tensorflow:global_step/sec: 75.6907 INFO:tensorflow:loss = 56.208035, step = 100 (1.323 sec) INFO:tensorflow:loss = 56.208035, step = 100 (1.323 sec) INFO:tensorflow:global_step/sec: 85.4193 INFO:tensorflow:global_step/sec: 85.4193 INFO:tensorflow:loss = 47.563675, step = 200 (1.170 sec) INFO:tensorflow:loss = 47.563675, step = 200 (1.170 sec) INFO:tensorflow:global_step/sec: 85.3916 INFO:tensorflow:global_step/sec: 85.3916 INFO:tensorflow:loss = 56.227097, step = 300 (1.171 sec) INFO:tensorflow:loss = 56.227097, step = 300 (1.171 sec) INFO:tensorflow:global_step/sec: 85.7359 INFO:tensorflow:global_step/sec: 85.7359 INFO:tensorflow:loss = 55.668434, step = 400 (1.166 sec) INFO:tensorflow:loss = 55.668434, step = 400 (1.166 sec) INFO:tensorflow:global_step/sec: 85.6231 INFO:tensorflow:global_step/sec: 85.6231 INFO:tensorflow:loss = 41.7245, step = 500 (1.168 sec) INFO:tensorflow:loss = 41.7245, step = 500 (1.168 sec) INFO:tensorflow:global_step/sec: 85.1399 INFO:tensorflow:global_step/sec: 85.1399 INFO:tensorflow:loss = 45.596313, step = 600 (1.174 sec) INFO:tensorflow:loss = 45.596313, step = 600 (1.174 sec) INFO:tensorflow:global_step/sec: 83.6346 INFO:tensorflow:global_step/sec: 83.6346 INFO:tensorflow:loss = 51.108143, step = 700 (1.196 sec) INFO:tensorflow:loss = 51.108143, step = 700 (1.196 sec) INFO:tensorflow:global_step/sec: 85.4834 INFO:tensorflow:global_step/sec: 85.4834 INFO:tensorflow:loss = 47.63583, step = 800 (1.170 sec) INFO:tensorflow:loss = 47.63583, step = 800 (1.170 sec) INFO:tensorflow:global_step/sec: 86.7353 INFO:tensorflow:global_step/sec: 86.7353 INFO:tensorflow:loss = 48.044117, step = 900 (1.153 sec) INFO:tensorflow:loss = 48.044117, step = 900 (1.153 sec) INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1000... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1000... INFO:tensorflow:Saving checkpoints for 1000 into /tmp/train/20220107-182524/model.ckpt. INFO:tensorflow:Saving checkpoints for 1000 into /tmp/train/20220107-182524/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1000... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1000... INFO:tensorflow:Loss for final step: 50.57175. INFO:tensorflow:Loss for final step: 50.57175. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Saver not created because there are no variables in the graph to restore 2022-01-07 18:25:40.091474: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 26 into an existing graph with producer version 987. Shape inference will have run different parts of the graph with different producer versions. INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Signatures INCLUDED in export for Classify: None INFO:tensorflow:Signatures INCLUDED in export for Classify: None INFO:tensorflow:Signatures INCLUDED in export for Regress: None INFO:tensorflow:Signatures INCLUDED in export for Regress: None INFO:tensorflow:Signatures INCLUDED in export for Predict: None INFO:tensorflow:Signatures INCLUDED in export for Predict: None INFO:tensorflow:Signatures INCLUDED in export for Train: None INFO:tensorflow:Signatures INCLUDED in export for Train: None INFO:tensorflow:Signatures INCLUDED in export for Eval: ['eval'] INFO:tensorflow:Signatures INCLUDED in export for Eval: ['eval'] WARNING:tensorflow:Export includes no default signature! WARNING:tensorflow:Export includes no default signature! INFO:tensorflow:Restoring parameters from /tmp/train/20220107-182524/model.ckpt-1000 INFO:tensorflow:Restoring parameters from /tmp/train/20220107-182524/model.ckpt-1000 INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets written to: /tmp/tfma_eval_model/temp-1641579940/assets INFO:tensorflow:Assets written to: /tmp/tfma_eval_model/temp-1641579940/assets INFO:tensorflow:SavedModel written to: /tmp/tfma_eval_model/temp-1641579940/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tfma_eval_model/temp-1641579940/saved_model.pb WARNING:absl:Tensorflow version (2.8.0-rc0) found. Note that TFMA support for TF 2.0 is currently in beta WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. INFO:tensorflow:Restoring parameters from /tmp/tfma_eval_model/1641579940/variables/variables INFO:tensorflow:Restoring parameters from /tmp/tfma_eval_model/1641579940/variables/variables
widget_view.render_fairness_indicator(eval_result=eval_result_nnlm)
FairnessIndicatorViewer(slicingMetrics=[{'sliceValue': 'Overall', 'slice': 'Overall', 'metrics': {'label/mean'…
Codificador de oraciones universal
eval_result_use = embedding_fairness_result('https://tfhub.dev/google/universal-sentence-encoder/2')
Training classifier for https://tfhub.dev/google/universal-sentence-encoder/2 INFO:tensorflow:Using default config. INFO:tensorflow:Using default config. INFO:tensorflow:Using config: {'_model_dir': '/tmp/train/20220107-182759', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} INFO:tensorflow:Using config: {'_model_dir': '/tmp/train/20220107-182759', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. 2022-01-07 18:28:15.955057: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 26 into an existing graph with producer version 987. Shape inference will have run different parts of the graph with different producer versions. INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Saving checkpoints for 0 into /tmp/train/20220107-182759/model.ckpt. INFO:tensorflow:Saving checkpoints for 0 into /tmp/train/20220107-182759/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:loss = 59.228935, step = 0 INFO:tensorflow:loss = 59.228935, step = 0 INFO:tensorflow:global_step/sec: 8.64079 INFO:tensorflow:global_step/sec: 8.64079 INFO:tensorflow:loss = 50.28162, step = 100 (11.575 sec) INFO:tensorflow:loss = 50.28162, step = 100 (11.575 sec) INFO:tensorflow:global_step/sec: 8.72597 INFO:tensorflow:global_step/sec: 8.72597 INFO:tensorflow:loss = 46.290745, step = 200 (11.460 sec) INFO:tensorflow:loss = 46.290745, step = 200 (11.460 sec) INFO:tensorflow:global_step/sec: 9.02825 INFO:tensorflow:global_step/sec: 9.02825 INFO:tensorflow:loss = 48.490734, step = 300 (11.076 sec) INFO:tensorflow:loss = 48.490734, step = 300 (11.076 sec) INFO:tensorflow:global_step/sec: 9.01342 INFO:tensorflow:global_step/sec: 9.01342 INFO:tensorflow:loss = 44.54372, step = 400 (11.095 sec) INFO:tensorflow:loss = 44.54372, step = 400 (11.095 sec) INFO:tensorflow:global_step/sec: 8.952 INFO:tensorflow:global_step/sec: 8.952 INFO:tensorflow:loss = 35.568554, step = 500 (11.171 sec) INFO:tensorflow:loss = 35.568554, step = 500 (11.171 sec) INFO:tensorflow:global_step/sec: 9.09908 INFO:tensorflow:global_step/sec: 9.09908 INFO:tensorflow:loss = 42.5132, step = 600 (10.990 sec) INFO:tensorflow:loss = 42.5132, step = 600 (10.990 sec) INFO:tensorflow:global_step/sec: 9.02127 INFO:tensorflow:global_step/sec: 9.02127 INFO:tensorflow:loss = 40.52431, step = 700 (11.085 sec) INFO:tensorflow:loss = 40.52431, step = 700 (11.085 sec) INFO:tensorflow:global_step/sec: 9.09376 INFO:tensorflow:global_step/sec: 9.09376 INFO:tensorflow:loss = 37.5485, step = 800 (10.996 sec) INFO:tensorflow:loss = 37.5485, step = 800 (10.996 sec) INFO:tensorflow:global_step/sec: 9.11679 INFO:tensorflow:global_step/sec: 9.11679 INFO:tensorflow:loss = 32.65558, step = 900 (10.968 sec) INFO:tensorflow:loss = 32.65558, step = 900 (10.968 sec) INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1000... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1000... INFO:tensorflow:Saving checkpoints for 1000 into /tmp/train/20220107-182759/model.ckpt. INFO:tensorflow:Saving checkpoints for 1000 into /tmp/train/20220107-182759/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1000... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1000... INFO:tensorflow:Loss for final step: 46.92047. INFO:tensorflow:Loss for final step: 46.92047. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. 2022-01-07 18:30:32.176628: W tensorflow/core/common_runtime/graph_constructor.cc:1511] Importing a graph with a lower producer version 26 into an existing graph with producer version 987. Shape inference will have run different parts of the graph with different producer versions. INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. WARNING:tensorflow:Trapezoidal rule is known to produce incorrect PR-AUCs; please switch to "careful_interpolation" instead. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Signatures INCLUDED in export for Classify: None INFO:tensorflow:Signatures INCLUDED in export for Classify: None INFO:tensorflow:Signatures INCLUDED in export for Regress: None INFO:tensorflow:Signatures INCLUDED in export for Regress: None INFO:tensorflow:Signatures INCLUDED in export for Predict: None INFO:tensorflow:Signatures INCLUDED in export for Predict: None INFO:tensorflow:Signatures INCLUDED in export for Train: None INFO:tensorflow:Signatures INCLUDED in export for Train: None INFO:tensorflow:Signatures INCLUDED in export for Eval: ['eval'] INFO:tensorflow:Signatures INCLUDED in export for Eval: ['eval'] WARNING:tensorflow:Export includes no default signature! WARNING:tensorflow:Export includes no default signature! INFO:tensorflow:Restoring parameters from /tmp/train/20220107-182759/model.ckpt-1000 INFO:tensorflow:Restoring parameters from /tmp/train/20220107-182759/model.ckpt-1000 INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:No assets to write. INFO:tensorflow:No assets to write. INFO:tensorflow:SavedModel written to: /tmp/tfma_eval_model/temp-1641580231/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tfma_eval_model/temp-1641580231/saved_model.pb WARNING:absl:Tensorflow version (2.8.0-rc0) found. Note that TFMA support for TF 2.0 is currently in beta WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. INFO:tensorflow:Restoring parameters from /tmp/tfma_eval_model/1641580231/variables/variables INFO:tensorflow:Restoring parameters from /tmp/tfma_eval_model/1641580231/variables/variables
widget_view.render_fairness_indicator(eval_result=eval_result_use)
FairnessIndicatorViewer(slicingMetrics=[{'sliceValue': 'Overall', 'slice': 'Overall', 'metrics': {'post_export…
Comparación de incrustaciones
También puede usar indicadores de equidad para comparar incrustaciones directamente. Por ejemplo, compare los modelos generados a partir de las incorporaciones NNLM y USE.
widget_view.render_fairness_indicator(multi_eval_results={'nnlm': eval_result_nnlm, 'use': eval_result_use})
FairnessIndicatorViewer(evalName='nnlm', evalNameCompare='use', slicingMetrics=[{'sliceValue': 'Overall', 'sli…