Tutoriel sur le composant de l'estimateur TFX

Restez organisé à l'aide des collections Enregistrez et classez les contenus selon vos préférences.

Une introduction composant par composant à TensorFlow Extended (TFX)

Ce didacticiel basé sur Colab parcourra de manière interactive chaque composant intégré de TensorFlow Extended (TFX).

Il couvre chaque étape d'un pipeline de machine learning de bout en bout, de l'ingestion de données à la diffusion d'un modèle jusqu'à la diffusion.

Lorsque vous avez terminé, le contenu de ce bloc-notes peut être automatiquement exporté en tant que code source du pipeline TFX, que vous pouvez orchestrer avec Apache Airflow et Apache Beam.

Fond

Ce bloc-notes montre comment utiliser TFX dans un environnement Jupyter/Colab. Ici, nous parcourons l'exemple de Chicago Taxi dans un cahier interactif.

Travailler dans un bloc-notes interactif est un moyen utile de se familiariser avec la structure d'un pipeline TFX. C'est également utile lorsque vous développez vos propres pipelines en tant qu'environnement de développement léger, mais vous devez savoir qu'il existe des différences dans la façon dont les blocs-notes interactifs sont orchestrés et dans la façon dont ils accèdent aux artefacts de métadonnées.

Orchestration

Dans un déploiement de production de TFX, vous utiliserez un orchestrateur tel qu'Apache Airflow, Kubeflow Pipelines ou Apache Beam pour orchestrer un graphe de pipeline prédéfini de composants TFX. Dans un bloc-notes interactif, le bloc-notes lui-même est l'orchestrateur, exécutant chaque composant TFX pendant que vous exécutez les cellules du bloc-notes.

Métadonnées

Dans un déploiement de production de TFX, vous accéderez aux métadonnées via l'API ML Metadata (MLMD). MLMD stocke les propriétés des métadonnées dans une base de données telle que MySQL ou SQLite, et stocke les charges utiles des métadonnées dans un magasin persistant tel que sur votre système de fichiers. Dans un bloc - notes interactif, les propriétés et les charges utiles sont stockées dans une base de données SQLite éphémère dans le /tmp répertoire sur l'ordinateur portable ou d'un serveur Jupyter Colab.

Installer

Tout d'abord, nous installons et importons les packages nécessaires, configurons les chemins et téléchargeons les données.

Pip de mise à niveau

Pour éviter de mettre à niveau Pip dans un système lors de l'exécution locale, assurez-vous que nous exécutons dans Colab. Les systèmes locaux peuvent bien sûr être mis à niveau séparément.

try:
  import colab
  !pip install --upgrade pip
except:
  pass

Installer TFX

pip install -U tfx

As-tu redémarré le runtime ?

Si vous utilisez Google Colab, la première fois que vous exécutez la cellule ci-dessus, vous devez redémarrer le runtime (Runtime > Redémarrer le runtime...). Cela est dû à la façon dont Colab charge les packages.

Importer des packages

Nous importons les packages nécessaires, y compris les classes de composants TFX standard.

import os
import pprint
import tempfile
import urllib

import absl
import tensorflow as tf
import tensorflow_model_analysis as tfma
tf.get_logger().propagate = False
pp = pprint.PrettyPrinter()

from tfx import v1 as tfx
from tfx.orchestration.experimental.interactive.interactive_context import InteractiveContext

%load_ext tfx.orchestration.experimental.interactive.notebook_extensions.skip

Vérifions les versions de la bibliothèque.

print('TensorFlow version: {}'.format(tf.__version__))
print('TFX version: {}'.format(tfx.__version__))
TensorFlow version: 2.6.2
TFX version: 1.4.0

Configurer des chemins de pipeline

# This is the root directory for your TFX pip package installation.
_tfx_root = tfx.__path__[0]

# This is the directory containing the TFX Chicago Taxi Pipeline example.
_taxi_root = os.path.join(_tfx_root, 'examples/chicago_taxi_pipeline')

# This is the path where your model will be pushed for serving.
_serving_model_dir = os.path.join(
    tempfile.mkdtemp(), 'serving_model/taxi_simple')

# Set up logging.
absl.logging.set_verbosity(absl.logging.INFO)

Télécharger des exemples de données

Nous téléchargeons l'exemple de jeu de données à utiliser dans notre pipeline TFX.

L'ensemble de données que nous utilisons est le taxi Trips ensemble de données publié par la ville de Chicago. Les colonnes de cet ensemble de données sont :

zone_de_collecte_de_communauté tarif voyage_début_mois
trip_start_hour trip_start_day trip_start_timestamp
ramassage_latitude ramassage_longitude dropoff_latitude
dropoff_longitude voyage_miles pick_census_tract
dropoff_census_tract type de paiement entreprise
trip_secondes dropoff_community_area des astuces

Avec cet ensemble de données, nous allons construire un modèle qui prédit les tips d'un voyage.

_data_root = tempfile.mkdtemp(prefix='tfx-data')
DATA_PATH = 'https://raw.githubusercontent.com/tensorflow/tfx/master/tfx/examples/chicago_taxi_pipeline/data/simple/data.csv'
_data_filepath = os.path.join(_data_root, "data.csv")
urllib.request.urlretrieve(DATA_PATH, _data_filepath)
('/tmp/tfx-data6e4_3xo9/data.csv', <http.client.HTTPMessage at 0x7f1a7e8cfb10>)

Jetez un coup d'œil au fichier CSV.

head {_data_filepath}
pickup_community_area,fare,trip_start_month,trip_start_hour,trip_start_day,trip_start_timestamp,pickup_latitude,pickup_longitude,dropoff_latitude,dropoff_longitude,trip_miles,pickup_census_tract,dropoff_census_tract,payment_type,company,trip_seconds,dropoff_community_area,tips
,12.45,5,19,6,1400269500,,,,,0.0,,,Credit Card,Chicago Elite Cab Corp. (Chicago Carriag,0,,0.0
,0,3,19,5,1362683700,,,,,0,,,Unknown,Chicago Elite Cab Corp.,300,,0
60,27.05,10,2,3,1380593700,41.836150155,-87.648787952,,,12.6,,,Cash,Taxi Affiliation Services,1380,,0.0
10,5.85,10,1,2,1382319000,41.985015101,-87.804532006,,,0.0,,,Cash,Taxi Affiliation Services,180,,0.0
14,16.65,5,7,5,1369897200,41.968069,-87.721559063,,,0.0,,,Cash,Dispatch Taxi Affiliation,1080,,0.0
13,16.45,11,12,3,1446554700,41.983636307,-87.723583185,,,6.9,,,Cash,,780,,0.0
16,32.05,12,1,1,1417916700,41.953582125,-87.72345239,,,15.4,,,Cash,,1200,,0.0
30,38.45,10,10,5,1444301100,41.839086906,-87.714003807,,,14.6,,,Cash,,2580,,0.0
11,14.65,1,1,3,1358213400,41.978829526,-87.771166703,,,5.81,,,Cash,,1080,,0.0

Avis de non-responsabilité : ce site fournit des applications utilisant des données qui ont été modifiées pour être utilisées à partir de sa source d'origine, www.cityofchicago.org, le site officiel de la ville de Chicago. La ville de Chicago ne fait aucune réclamation quant au contenu, à l'exactitude, à l'actualité ou à l'exhaustivité des données fournies sur ce site. Les données fournies sur ce site sont susceptibles d'être modifiées à tout moment. Il est entendu que les données fournies sur ce site sont utilisées à ses propres risques.

Créer le Contexte Interactif

Enfin, nous créons un InteractiveContext, qui nous permettra d'exécuter les composants TFX de manière interactive dans ce notebook.

# Here, we create an InteractiveContext using default parameters. This will
# use a temporary directory with an ephemeral ML Metadata database instance.
# To use your own pipeline root or database, the optional properties
# `pipeline_root` and `metadata_connection_config` may be passed to
# InteractiveContext. Calls to InteractiveContext are no-ops outside of the
# notebook.
context = InteractiveContext()
WARNING:absl:InteractiveContext pipeline_root argument not provided: using temporary directory /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4 as root for pipeline outputs.
WARNING:absl:InteractiveContext metadata_connection_config not provided: using SQLite ML Metadata database at /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/metadata.sqlite.

Exécuter les composants TFX de manière interactive

Dans les cellules qui suivent, nous créons les composants TFX un par un, exécutons chacun d'eux et visualisons leurs artefacts de sortie.

ExempleGen

Le ExampleGen composant est généralement au début d'un pipeline de TFX. Ce sera:

  1. Diviser les données en ensembles d'entraînement et d'évaluation (par défaut, 2/3 d'entraînement + 1/3 d'évaluation)
  2. Données Convertir dans le tf.Example le format ( en savoir plus ici )
  3. Copier des données dans le _tfx_root répertoire pour d' autres composants d'accès

ExampleGen prend en entrée le chemin vers votre source de données. Dans notre cas, c'est le _data_root chemin qui contient le fichier CSV téléchargé.

example_gen = tfx.components.CsvExampleGen(input_base=_data_root)
context.run(example_gen)
INFO:absl:Running driver for CsvExampleGen
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:select span and version = (0, None)
INFO:absl:latest span and version = (0, None)
INFO:absl:Running executor for CsvExampleGen
INFO:absl:Generating examples.
WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.
INFO:absl:Processing input csv data /tmp/tfx-data6e4_3xo9/* to TFExample.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be.
INFO:absl:Examples generated.
INFO:absl:Running publisher for CsvExampleGen
INFO:absl:MetadataStore with DB connection initialized

Examinons les artefacts de sortie de ExampleGen . Ce composant produit deux artefacts, des exemples de formation et des exemples d'évaluation :

artifact = example_gen.outputs['examples'].get()[0]
print(artifact.split_names, artifact.uri)
["train", "eval"] /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/CsvExampleGen/examples/1

Nous pouvons également jeter un œil aux trois premiers exemples de formation :

# Get the URI of the output artifact representing the training examples, which is a directory
train_uri = os.path.join(example_gen.outputs['examples'].get()[0].uri, 'Split-train')

# Get the list of files in this directory (all compressed TFRecord files)
tfrecord_filenames = [os.path.join(train_uri, name)
                      for name in os.listdir(train_uri)]

# Create a `TFRecordDataset` to read these files
dataset = tf.data.TFRecordDataset(tfrecord_filenames, compression_type="GZIP")

# Iterate over the first 3 records and decode them.
for tfrecord in dataset.take(3):
  serialized_example = tfrecord.numpy()
  example = tf.train.Example()
  example.ParseFromString(serialized_example)
  pp.pprint(example)
features {
  feature {
    key: "company"
    value {
      bytes_list {
        value: "Chicago Elite Cab Corp. (Chicago Carriag"
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 12.449999809265137
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      bytes_list {
        value: "Credit Card"
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "tips"
    value {
      float_list {
        value: 0.0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: 0.0
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 6
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 19
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 5
      }
    }
  }
  feature {
    key: "trip_start_timestamp"
    value {
      int64_list {
        value: 1400269500
      }
    }
  }
}

features {
  feature {
    key: "company"
    value {
      bytes_list {
        value: "Taxi Affiliation Services"
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 27.049999237060547
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      bytes_list {
        value: "Cash"
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
        value: 60
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      float_list {
        value: 41.836151123046875
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      float_list {
        value: -87.64878845214844
      }
    }
  }
  feature {
    key: "tips"
    value {
      float_list {
        value: 0.0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: 12.600000381469727
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      int64_list {
        value: 1380
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 2
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 10
      }
    }
  }
  feature {
    key: "trip_start_timestamp"
    value {
      int64_list {
        value: 1380593700
      }
    }
  }
}

features {
  feature {
    key: "company"
    value {
      bytes_list {
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      float_list {
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 16.450000762939453
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      bytes_list {
        value: "Cash"
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
        value: 13
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      float_list {
        value: 41.98363494873047
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      float_list {
        value: -87.72357940673828
      }
    }
  }
  feature {
    key: "tips"
    value {
      float_list {
        value: 0.0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: 6.900000095367432
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      int64_list {
        value: 780
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 12
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 11
      }
    }
  }
  feature {
    key: "trip_start_timestamp"
    value {
      int64_list {
        value: 1446554700
      }
    }
  }
}

Maintenant que ExampleGen a terminé ingérant les données, l'étape suivante est l' analyse des données.

StatistiquesGen

Les StatisticsGen statistiques sur votre composant Calcule ensemble de données pour l' analyse des données, ainsi que pour une utilisation dans les composants en aval. Il utilise la validation des données tensorflow bibliothèque.

StatisticsGen prend en entrée l'ensemble de données que nous venons en utilisant ingéré ExampleGen .

statistics_gen = tfx.components.StatisticsGen(examples=example_gen.outputs['examples'])
context.run(statistics_gen)
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Running driver for StatisticsGen
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running executor for StatisticsGen
INFO:absl:Generating statistics for split train.
INFO:absl:Statistics for split train written to /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/StatisticsGen/statistics/2/Split-train.
INFO:absl:Generating statistics for split eval.
INFO:absl:Statistics for split eval written to /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/StatisticsGen/statistics/2/Split-eval.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
INFO:absl:Running publisher for StatisticsGen
INFO:absl:MetadataStore with DB connection initialized

Après StatisticsGen , nous pouvons visualiser fin de l' exécution, les statistiques délivrées. Essayez de jouer avec les différentes intrigues !

context.show(statistics_gen.outputs['statistics'])

SchemaGen

Le SchemaGen composant génère un schéma basé sur vos données statistiques. (Un schéma définit les limites attendues, les types et les propriétés des fonctionnalités de votre ensemble de données.) Il utilise également la validation des données tensorflow bibliothèque.

SchemaGen prendra en entrée les statistiques que nous avons produit avec StatisticsGen , regardant la division par défaut de formation.

schema_gen = tfx.components.SchemaGen(
    statistics=statistics_gen.outputs['statistics'],
    infer_feature_shape=False)
context.run(schema_gen)
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Running driver for SchemaGen
INFO:absl:MetadataStore with DB connection initialized
WARNING: Logging before InitGoogleLogging() is written to STDERR
I1205 10:59:36.632395  1805 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Running executor for SchemaGen
INFO:absl:Processing schema from statistics for split train.
INFO:absl:Processing schema from statistics for split eval.
INFO:absl:Schema written to /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/SchemaGen/schema/3/schema.pbtxt.
INFO:absl:Running publisher for SchemaGen
INFO:absl:MetadataStore with DB connection initialized

Après SchemaGen termine la course, nous pouvons visualiser le schéma généré comme une table.

context.show(schema_gen.outputs['schema'])

Chaque entité de votre jeu de données s'affiche sous forme de ligne dans la table de schéma, à côté de ses propriétés. Le schéma capture également toutes les valeurs qu'une caractéristique catégorielle prend, désignées par son domaine.

Pour en savoir plus sur les schémas, consultez la documentation SchemaGen .

ExempleValidateur

Le ExampleValidator composant détecte des anomalies dans vos données, sur la base des attentes définies par le schéma. Il utilise également la validation des données tensorflow bibliothèque.

ExampleValidator prendra en entrée les statistiques de StatisticsGen et le schéma de SchemaGen .

example_validator = tfx.components.ExampleValidator(
    statistics=statistics_gen.outputs['statistics'],
    schema=schema_gen.outputs['schema'])
context.run(example_validator)
INFO:absl:Excluding no splits because exclude_splits is not set.
INFO:absl:Running driver for ExampleValidator
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running executor for ExampleValidator
INFO:absl:Validating schema against the computed statistics for split train.
INFO:absl:Validation complete for split train. Anomalies written to /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/ExampleValidator/anomalies/4/Split-train.
INFO:absl:Validating schema against the computed statistics for split eval.
INFO:absl:Validation complete for split eval. Anomalies written to /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/ExampleValidator/anomalies/4/Split-eval.
INFO:absl:Running publisher for ExampleValidator
INFO:absl:MetadataStore with DB connection initialized

Après ExampleValidator termine la course, on peut visualiser les anomalies comme une table.

context.show(example_validator.outputs['anomalies'])

Dans le tableau des anomalies, on peut voir qu'il n'y a pas d'anomalies. C'est ce à quoi nous nous attendions, car il s'agit du premier ensemble de données que nous avons analysé et le schéma y est adapté. Vous devriez revoir ce schéma - tout imprévu signifie une anomalie dans les données. Une fois examiné, le schéma peut être utilisé pour protéger les données futures, et les anomalies produites ici peuvent être utilisées pour déboguer les performances du modèle, comprendre comment vos données évoluent dans le temps et identifier les erreurs de données.

Transformer

Le Transform réalise l' ingénierie des fonctionnalités de composants pour la formation et au service. Il utilise la tensorflow Transformer la bibliothèque.

Transform prendra comme entrée les données à partir de ExampleGen , le schéma de SchemaGen , ainsi que d' un module qui contient défini par l' utilisateur transformer code.

Voyons voir un exemple de défini par l' utilisateur Transformer le code ci - dessous (pour une introduction à la tensorflow Transformer API, voir le tutoriel ). Tout d'abord, nous définissons quelques constantes pour l'ingénierie des fonctionnalités :

_taxi_constants_module_file = 'taxi_constants.py'
%%writefile {_taxi_constants_module_file}

# Categorical features are assumed to each have a maximum value in the dataset.
MAX_CATEGORICAL_FEATURE_VALUES = [24, 31, 12]

CATEGORICAL_FEATURE_KEYS = [
    'trip_start_hour', 'trip_start_day', 'trip_start_month',
    'pickup_census_tract', 'dropoff_census_tract', 'pickup_community_area',
    'dropoff_community_area'
]

DENSE_FLOAT_FEATURE_KEYS = ['trip_miles', 'fare', 'trip_seconds']

# Number of buckets used by tf.transform for encoding each feature.
FEATURE_BUCKET_COUNT = 10

BUCKET_FEATURE_KEYS = [
    'pickup_latitude', 'pickup_longitude', 'dropoff_latitude',
    'dropoff_longitude'
]

# Number of vocabulary terms used for encoding VOCAB_FEATURES by tf.transform
VOCAB_SIZE = 1000

# Count of out-of-vocab buckets in which unrecognized VOCAB_FEATURES are hashed.
OOV_SIZE = 10

VOCAB_FEATURE_KEYS = [
    'payment_type',
    'company',
]

# Keys
LABEL_KEY = 'tips'
FARE_KEY = 'fare'
Writing taxi_constants.py

Ensuite, nous écrivons un preprocessing_fn qui prend en données brutes en entrée, et renvoie les caractéristiques transformées que notre modèle peut entraîner sur:

_taxi_transform_module_file = 'taxi_transform.py'
%%writefile {_taxi_transform_module_file}

import tensorflow as tf
import tensorflow_transform as tft

import taxi_constants

_DENSE_FLOAT_FEATURE_KEYS = taxi_constants.DENSE_FLOAT_FEATURE_KEYS
_VOCAB_FEATURE_KEYS = taxi_constants.VOCAB_FEATURE_KEYS
_VOCAB_SIZE = taxi_constants.VOCAB_SIZE
_OOV_SIZE = taxi_constants.OOV_SIZE
_FEATURE_BUCKET_COUNT = taxi_constants.FEATURE_BUCKET_COUNT
_BUCKET_FEATURE_KEYS = taxi_constants.BUCKET_FEATURE_KEYS
_CATEGORICAL_FEATURE_KEYS = taxi_constants.CATEGORICAL_FEATURE_KEYS
_FARE_KEY = taxi_constants.FARE_KEY
_LABEL_KEY = taxi_constants.LABEL_KEY


def preprocessing_fn(inputs):
  """tf.transform's callback function for preprocessing inputs.
  Args:
    inputs: map from feature keys to raw not-yet-transformed features.
  Returns:
    Map from string feature key to transformed feature operations.
  """
  outputs = {}
  for key in _DENSE_FLOAT_FEATURE_KEYS:
    # If sparse make it dense, setting nan's to 0 or '', and apply zscore.
    outputs[key] = tft.scale_to_z_score(
        _fill_in_missing(inputs[key]))

  for key in _VOCAB_FEATURE_KEYS:
    # Build a vocabulary for this feature.
    outputs[key] = tft.compute_and_apply_vocabulary(
        _fill_in_missing(inputs[key]),
        top_k=_VOCAB_SIZE,
        num_oov_buckets=_OOV_SIZE)

  for key in _BUCKET_FEATURE_KEYS:
    outputs[key] = tft.bucketize(
        _fill_in_missing(inputs[key]), _FEATURE_BUCKET_COUNT)

  for key in _CATEGORICAL_FEATURE_KEYS:
    outputs[key] = _fill_in_missing(inputs[key])

  # Was this passenger a big tipper?
  taxi_fare = _fill_in_missing(inputs[_FARE_KEY])
  tips = _fill_in_missing(inputs[_LABEL_KEY])
  outputs[_LABEL_KEY] = tf.where(
      tf.math.is_nan(taxi_fare),
      tf.cast(tf.zeros_like(taxi_fare), tf.int64),
      # Test if the tip was > 20% of the fare.
      tf.cast(
          tf.greater(tips, tf.multiply(taxi_fare, tf.constant(0.2))), tf.int64))

  return outputs


def _fill_in_missing(x):
  """Replace missing values in a SparseTensor.
  Fills in missing values of `x` with '' or 0, and converts to a dense tensor.
  Args:
    x: A `SparseTensor` of rank 2.  Its dense shape should have size at most 1
      in the second dimension.
  Returns:
    A rank 1 tensor where missing values of `x` have been filled in.
  """
  if not isinstance(x, tf.sparse.SparseTensor):
    return x

  default_value = '' if x.dtype == tf.string else 0
  return tf.squeeze(
      tf.sparse.to_dense(
          tf.SparseTensor(x.indices, x.values, [x.dense_shape[0], 1]),
          default_value),
      axis=1)
Writing taxi_transform.py

Maintenant, nous passons dans ce code d'ingénierie de fonction pour la Transform de composants et l' exécuter pour transformer vos données.

transform = tfx.components.Transform(
    examples=example_gen.outputs['examples'],
    schema=schema_gen.outputs['schema'],
    module_file=os.path.abspath(_taxi_transform_module_file))
context.run(transform)
INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/taxi_transform.py' (including modules: ['taxi_constants', 'taxi_transform']).
INFO:absl:User module package has hash fingerprint version f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmp6h4enzoj/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmp1kilc09_', '--dist-dir', '/tmp/tmpu7dszvtp']
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools.
  setuptools.SetuptoolsDeprecationWarning,
listing git files failed - pretending there aren't any
INFO:absl:Successfully built user code wheel distribution at '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl'; target user module is 'taxi_transform'.
INFO:absl:Full user module path is 'taxi_transform@/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl'
INFO:absl:Running driver for Transform
INFO:absl:MetadataStore with DB connection initialized
I1205 10:59:37.233487  1805 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Running executor for Transform
I1205 10:59:37.237077  1805 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Analyze the 'train' split and transform all splits when splits_config is not set.
INFO:absl:udf_utils.get_fn {'module_file': None, 'module_path': 'taxi_transform@/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl', 'preprocessing_fn': None} 'preprocessing_fn'
INFO:absl:Installing '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmp9ljjlr0t', '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl']
running bdist_wheel
running build
running build_py
creating build
creating build/lib
copying taxi_constants.py -> build/lib
copying taxi_transform.py -> build/lib
installing to /tmp/tmp1kilc09_
running install
running install_lib
copying build/lib/taxi_constants.py -> /tmp/tmp1kilc09_
copying build/lib/taxi_transform.py -> /tmp/tmp1kilc09_
running install_egg_info
running egg_info
creating tfx_user_code_Transform.egg-info
writing tfx_user_code_Transform.egg-info/PKG-INFO
writing dependency_links to tfx_user_code_Transform.egg-info/dependency_links.txt
writing top-level names to tfx_user_code_Transform.egg-info/top_level.txt
writing manifest file 'tfx_user_code_Transform.egg-info/SOURCES.txt'
reading manifest file 'tfx_user_code_Transform.egg-info/SOURCES.txt'
writing manifest file 'tfx_user_code_Transform.egg-info/SOURCES.txt'
Copying tfx_user_code_Transform.egg-info to /tmp/tmp1kilc09_/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3.7.egg-info
running install_scripts
creating /tmp/tmp1kilc09_/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424.dist-info/WHEEL
creating '/tmp/tmpu7dszvtp/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl' and adding '/tmp/tmp1kilc09_' to it
adding 'taxi_constants.py'
adding 'taxi_transform.py'
adding 'tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424.dist-info/METADATA'
adding 'tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424.dist-info/WHEEL'
adding 'tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424.dist-info/top_level.txt'
adding 'tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424.dist-info/RECORD'
removing /tmp/tmp1kilc09_
Processing /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl
INFO:absl:Successfully installed '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl'.
INFO:absl:udf_utils.get_fn {'module_file': None, 'module_path': 'taxi_transform@/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl', 'stats_options_updater_fn': None} 'stats_options_updater_fn'
INFO:absl:Installing '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmp6rcd17nh', '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl']
Installing collected packages: tfx-user-code-Transform
Successfully installed tfx-user-code-Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424
Processing /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl
INFO:absl:Successfully installed '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl'.
INFO:absl:Installing '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpbq8i22l2', '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl']
Installing collected packages: tfx-user-code-Transform
Successfully installed tfx-user-code-Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424
Processing /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl
INFO:absl:Successfully installed '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424-py3-none-any.whl'.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
Installing collected packages: tfx-user-code-Transform
Successfully installed tfx-user-code-Transform-0.0+f78e5f6b4988b5d5289aab277eceaff03bd38343154c2f602e06d95c6acd5424
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_transform/tf_utils.py:289: Tensor.experimental_ref (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use ref() instead.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
WARNING:root:This output type hint will be ignored and not used for type-checking purposes. Typically, output type hints for a PTransform are single (or nested) types wrapped by a PCollection, PDone, or None. Got: Tuple[Dict[str, Union[NoneType, _Dataset]], Union[Dict[str, Dict[str, PCollection]], NoneType], int] instead.
WARNING:absl:Tables initialized inside a tf.function  will be re-initialized on every invocation of the function. This  re-initialization can have significant impact on performance. Consider lifting  them out of the graph context using  `tf.init_scope`.: compute_and_apply_vocabulary/apply_vocab/text_file_init/InitializeTableFromTextFileV2
WARNING:absl:Tables initialized inside a tf.function  will be re-initialized on every invocation of the function. This  re-initialization can have significant impact on performance. Consider lifting  them out of the graph context using  `tf.init_scope`.: compute_and_apply_vocabulary_1/apply_vocab/text_file_init/InitializeTableFromTextFileV2
WARNING:absl:Tables initialized inside a tf.function  will be re-initialized on every invocation of the function. This  re-initialization can have significant impact on performance. Consider lifting  them out of the graph context using  `tf.init_scope`.: compute_and_apply_vocabulary/apply_vocab/text_file_init/InitializeTableFromTextFileV2
WARNING:absl:Tables initialized inside a tf.function  will be re-initialized on every invocation of the function. This  re-initialization can have significant impact on performance. Consider lifting  them out of the graph context using  `tf.init_scope`.: compute_and_apply_vocabulary_1/apply_vocab/text_file_init/InitializeTableFromTextFileV2
WARNING:root:This output type hint will be ignored and not used for type-checking purposes. Typically, output type hints for a PTransform are single (or nested) types wrapped by a PCollection, PDone, or None. Got: Tuple[Dict[str, Union[NoneType, _Dataset]], Union[Dict[str, Dict[str, PCollection]], NoneType], int] instead.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature company has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature dropoff_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature fare has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature payment_type has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_census_tract has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_community_area has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_latitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature pickup_longitude has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature tips has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_miles has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_seconds has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_day has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_hour has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_month has no shape. Setting to VarLenSparseTensor.
INFO:absl:Feature trip_start_timestamp has no shape. Setting to VarLenSparseTensor.
WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
2021-12-05 10:59:51.571461: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Transform/transform_graph/5/.temp_path/tftransform_tmp/7fa0435e7af949ef9e3b27e50d470602/assets
INFO:tensorflow:tensorflow_text is not available.
INFO:tensorflow:tensorflow_decision_forests is not available.
INFO:tensorflow:struct2tensor is not available.
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Transform/transform_graph/5/.temp_path/tftransform_tmp/f9ed85f61d1f4528846646b3a922c30c/assets
INFO:tensorflow:tensorflow_text is not available.
INFO:tensorflow:tensorflow_decision_forests is not available.
INFO:tensorflow:struct2tensor is not available.
INFO:tensorflow:tensorflow_text is not available.
INFO:tensorflow:tensorflow_decision_forests is not available.
INFO:tensorflow:struct2tensor is not available.
INFO:absl:Running publisher for Transform
INFO:absl:MetadataStore with DB connection initialized

Examinons les artefacts de sortie de Transform . Cette composante produit deux types de sorties :

  • transform_graph est le graphique qui peut effectuer les opérations de pré - traitement (ce graphique sera inclus dans les modèles de service et évaluation).
  • transformed_examples représente la formation et des données prétraitées évaluation.
transform.outputs
{'transform_graph': Channel(
     type_name: TransformGraph
     artifacts: [Artifact(artifact: id: 5
 type_id: 22
 uri: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Transform/transform_graph/5"
 custom_properties {
   key: "name"
   value {
     string_value: "transform_graph"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.4.0"
   }
 }
 state: LIVE
 , artifact_type: id: 22
 name: "TransformGraph"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'transformed_examples': Channel(
     type_name: Examples
     artifacts: [Artifact(artifact: id: 6
 type_id: 14
 uri: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Transform/transformed_examples/5"
 properties {
   key: "split_names"
   value {
     string_value: "[\"train\", \"eval\"]"
   }
 }
 custom_properties {
   key: "name"
   value {
     string_value: "transformed_examples"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.4.0"
   }
 }
 state: LIVE
 , artifact_type: id: 14
 name: "Examples"
 properties {
   key: "span"
   value: INT
 }
 properties {
   key: "split_names"
   value: STRING
 }
 properties {
   key: "version"
   value: INT
 }
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'updated_analyzer_cache': Channel(
     type_name: TransformCache
     artifacts: [Artifact(artifact: id: 7
 type_id: 23
 uri: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Transform/updated_analyzer_cache/5"
 custom_properties {
   key: "name"
   value {
     string_value: "updated_analyzer_cache"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.4.0"
   }
 }
 state: LIVE
 , artifact_type: id: 23
 name: "TransformCache"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'pre_transform_schema': Channel(
     type_name: Schema
     artifacts: [Artifact(artifact: id: 8
 type_id: 18
 uri: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Transform/pre_transform_schema/5"
 custom_properties {
   key: "name"
   value {
     string_value: "pre_transform_schema"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.4.0"
   }
 }
 state: LIVE
 , artifact_type: id: 18
 name: "Schema"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'pre_transform_stats': Channel(
     type_name: ExampleStatistics
     artifacts: [Artifact(artifact: id: 9
 type_id: 16
 uri: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Transform/pre_transform_stats/5"
 custom_properties {
   key: "name"
   value {
     string_value: "pre_transform_stats"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.4.0"
   }
 }
 state: LIVE
 , artifact_type: id: 16
 name: "ExampleStatistics"
 properties {
   key: "span"
   value: INT
 }
 properties {
   key: "split_names"
   value: STRING
 }
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'post_transform_schema': Channel(
     type_name: Schema
     artifacts: [Artifact(artifact: id: 10
 type_id: 18
 uri: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Transform/post_transform_schema/5"
 custom_properties {
   key: "name"
   value {
     string_value: "post_transform_schema"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.4.0"
   }
 }
 state: LIVE
 , artifact_type: id: 18
 name: "Schema"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'post_transform_stats': Channel(
     type_name: ExampleStatistics
     artifacts: [Artifact(artifact: id: 11
 type_id: 16
 uri: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Transform/post_transform_stats/5"
 custom_properties {
   key: "name"
   value {
     string_value: "post_transform_stats"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.4.0"
   }
 }
 state: LIVE
 , artifact_type: id: 16
 name: "ExampleStatistics"
 properties {
   key: "span"
   value: INT
 }
 properties {
   key: "split_names"
   value: STRING
 }
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'post_transform_anomalies': Channel(
     type_name: ExampleAnomalies
     artifacts: [Artifact(artifact: id: 12
 type_id: 20
 uri: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Transform/post_transform_anomalies/5"
 custom_properties {
   key: "name"
   value {
     string_value: "post_transform_anomalies"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Transform"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.4.0"
   }
 }
 state: LIVE
 , artifact_type: id: 20
 name: "ExampleAnomalies"
 properties {
   key: "span"
   value: INT
 }
 properties {
   key: "split_names"
   value: STRING
 }
 )]
     additional_properties: {}
     additional_custom_properties: {}
 )}

Jetez un coup d' oeil à l' transform_graph artefact. Il pointe vers un répertoire contenant trois sous-répertoires.

train_uri = transform.outputs['transform_graph'].get()[0].uri
os.listdir(train_uri)
['transform_fn', 'transformed_metadata', 'metadata']

Le transformed_metadata sous - répertoire contient le schéma des données prétraitées. Le transform_fn sous - répertoire contient le graphique de pré - traitement réel. Les metadata sous - répertoire contient le schéma des données d' origine.

Nous pouvons également jeter un œil aux trois premiers exemples transformés :

# Get the URI of the output artifact representing the transformed examples, which is a directory
train_uri = os.path.join(transform.outputs['transformed_examples'].get()[0].uri, 'Split-train')

# Get the list of files in this directory (all compressed TFRecord files)
tfrecord_filenames = [os.path.join(train_uri, name)
                      for name in os.listdir(train_uri)]

# Create a `TFRecordDataset` to read these files
dataset = tf.data.TFRecordDataset(tfrecord_filenames, compression_type="GZIP")

# Iterate over the first 3 records and decode them.
for tfrecord in dataset.take(3):
  serialized_example = tfrecord.numpy()
  example = tf.train.Example()
  example.ParseFromString(serialized_example)
  pp.pprint(example)
features {
  feature {
    key: "company"
    value {
      int64_list {
        value: 8
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 0.06106060370802879
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      int64_list {
        value: 1
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "tips"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: -0.15886740386486053
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      float_list {
        value: -0.7118487358093262
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 6
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 19
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 5
      }
    }
  }
}

features {
  feature {
    key: "company"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 1.2521241903305054
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
        value: 60
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "tips"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: 0.532160758972168
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      float_list {
        value: 0.5509493350982666
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 2
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 10
      }
    }
  }
}

features {
  feature {
    key: "company"
    value {
      int64_list {
        value: 48
      }
    }
  }
  feature {
    key: "dropoff_census_tract"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_community_area"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_latitude"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "dropoff_longitude"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "fare"
    value {
      float_list {
        value: 0.3873794674873352
      }
    }
  }
  feature {
    key: "payment_type"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_census_tract"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "pickup_community_area"
    value {
      int64_list {
        value: 13
      }
    }
  }
  feature {
    key: "pickup_latitude"
    value {
      int64_list {
        value: 9
      }
    }
  }
  feature {
    key: "pickup_longitude"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "tips"
    value {
      int64_list {
        value: 0
      }
    }
  }
  feature {
    key: "trip_miles"
    value {
      float_list {
        value: 0.21955278515815735
      }
    }
  }
  feature {
    key: "trip_seconds"
    value {
      float_list {
        value: 0.0019067146349698305
      }
    }
  }
  feature {
    key: "trip_start_day"
    value {
      int64_list {
        value: 3
      }
    }
  }
  feature {
    key: "trip_start_hour"
    value {
      int64_list {
        value: 12
      }
    }
  }
  feature {
    key: "trip_start_month"
    value {
      int64_list {
        value: 11
      }
    }
  }
}

Après la Transform de composant a transformé vos données en fonctionnalités, et l'étape suivante consiste à former un modèle.

Entraîneur

Le Trainer composant formera un modèle que vous définissez dans tensorflow (soit en utilisant l'API estimateur ou l'API Keras avec model_to_estimator ).

Trainer prend en entrée le schéma de SchemaGen , les données transformées et graphique de Transform , des paramètres de formation, ainsi que d' un module qui contient le code de modèle défini par l' utilisateur.

Voyons voir un exemple de code de modèle défini par l' utilisateur ci - dessous (pour une introduction aux API estimateur tensorflow, voir le tutoriel ):

_taxi_trainer_module_file = 'taxi_trainer.py'
%%writefile {_taxi_trainer_module_file}

import tensorflow as tf
import tensorflow_model_analysis as tfma
import tensorflow_transform as tft
from tensorflow_transform.tf_metadata import schema_utils
from tfx_bsl.tfxio import dataset_options

import taxi_constants

_DENSE_FLOAT_FEATURE_KEYS = taxi_constants.DENSE_FLOAT_FEATURE_KEYS
_VOCAB_FEATURE_KEYS = taxi_constants.VOCAB_FEATURE_KEYS
_VOCAB_SIZE = taxi_constants.VOCAB_SIZE
_OOV_SIZE = taxi_constants.OOV_SIZE
_FEATURE_BUCKET_COUNT = taxi_constants.FEATURE_BUCKET_COUNT
_BUCKET_FEATURE_KEYS = taxi_constants.BUCKET_FEATURE_KEYS
_CATEGORICAL_FEATURE_KEYS = taxi_constants.CATEGORICAL_FEATURE_KEYS
_MAX_CATEGORICAL_FEATURE_VALUES = taxi_constants.MAX_CATEGORICAL_FEATURE_VALUES
_LABEL_KEY = taxi_constants.LABEL_KEY


# Tf.Transform considers these features as "raw"
def _get_raw_feature_spec(schema):
  return schema_utils.schema_as_feature_spec(schema).feature_spec


def _build_estimator(config, hidden_units=None, warm_start_from=None):
  """Build an estimator for predicting the tipping behavior of taxi riders.
  Args:
    config: tf.estimator.RunConfig defining the runtime environment for the
      estimator (including model_dir).
    hidden_units: [int], the layer sizes of the DNN (input layer first)
    warm_start_from: Optional directory to warm start from.
  Returns:
    A dict of the following:
      - estimator: The estimator that will be used for training and eval.
      - train_spec: Spec for training.
      - eval_spec: Spec for eval.
      - eval_input_receiver_fn: Input function for eval.
  """
  real_valued_columns = [
      tf.feature_column.numeric_column(key, shape=())
      for key in _DENSE_FLOAT_FEATURE_KEYS
  ]
  categorical_columns = [
      tf.feature_column.categorical_column_with_identity(
          key, num_buckets=_VOCAB_SIZE + _OOV_SIZE, default_value=0)
      for key in _VOCAB_FEATURE_KEYS
  ]
  categorical_columns += [
      tf.feature_column.categorical_column_with_identity(
          key, num_buckets=_FEATURE_BUCKET_COUNT, default_value=0)
      for key in _BUCKET_FEATURE_KEYS
  ]
  categorical_columns += [
      tf.feature_column.categorical_column_with_identity(  # pylint: disable=g-complex-comprehension
          key,
          num_buckets=num_buckets,
          default_value=0) for key, num_buckets in zip(
              _CATEGORICAL_FEATURE_KEYS,
              _MAX_CATEGORICAL_FEATURE_VALUES)
  ]
  return tf.estimator.DNNLinearCombinedClassifier(
      config=config,
      linear_feature_columns=categorical_columns,
      dnn_feature_columns=real_valued_columns,
      dnn_hidden_units=hidden_units or [100, 70, 50, 25],
      warm_start_from=warm_start_from)


def _example_serving_receiver_fn(tf_transform_graph, schema):
  """Build the serving in inputs.
  Args:
    tf_transform_graph: A TFTransformOutput.
    schema: the schema of the input data.
  Returns:
    Tensorflow graph which parses examples, applying tf-transform to them.
  """
  raw_feature_spec = _get_raw_feature_spec(schema)
  raw_feature_spec.pop(_LABEL_KEY)

  raw_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(
      raw_feature_spec, default_batch_size=None)
  serving_input_receiver = raw_input_fn()

  transformed_features = tf_transform_graph.transform_raw_features(
      serving_input_receiver.features)

  return tf.estimator.export.ServingInputReceiver(
      transformed_features, serving_input_receiver.receiver_tensors)


def _eval_input_receiver_fn(tf_transform_graph, schema):
  """Build everything needed for the tf-model-analysis to run the model.
  Args:
    tf_transform_graph: A TFTransformOutput.
    schema: the schema of the input data.
  Returns:
    EvalInputReceiver function, which contains:
      - Tensorflow graph which parses raw untransformed features, applies the
        tf-transform preprocessing operators.
      - Set of raw, untransformed features.
      - Label against which predictions will be compared.
  """
  # Notice that the inputs are raw features, not transformed features here.
  raw_feature_spec = _get_raw_feature_spec(schema)

  serialized_tf_example = tf.compat.v1.placeholder(
      dtype=tf.string, shape=[None], name='input_example_tensor')

  # Add a parse_example operator to the tensorflow graph, which will parse
  # raw, untransformed, tf examples.
  features = tf.io.parse_example(serialized_tf_example, raw_feature_spec)

  # Now that we have our raw examples, process them through the tf-transform
  # function computed during the preprocessing step.
  transformed_features = tf_transform_graph.transform_raw_features(
      features)

  # The key name MUST be 'examples'.
  receiver_tensors = {'examples': serialized_tf_example}

  # NOTE: Model is driven by transformed features (since training works on the
  # materialized output of TFT, but slicing will happen on raw features.
  features.update(transformed_features)

  return tfma.export.EvalInputReceiver(
      features=features,
      receiver_tensors=receiver_tensors,
      labels=transformed_features[_LABEL_KEY])


def _input_fn(file_pattern, data_accessor, tf_transform_output, batch_size=200):
  """Generates features and label for tuning/training.

  Args:
    file_pattern: List of paths or patterns of input tfrecord files.
    data_accessor: DataAccessor for converting input to RecordBatch.
    tf_transform_output: A TFTransformOutput.
    batch_size: representing the number of consecutive elements of returned
      dataset to combine in a single batch

  Returns:
    A dataset that contains (features, indices) tuple where features is a
      dictionary of Tensors, and indices is a single Tensor of label indices.
  """
  return data_accessor.tf_dataset_factory(
      file_pattern,
      dataset_options.TensorFlowDatasetOptions(
          batch_size=batch_size, label_key=_LABEL_KEY),
      tf_transform_output.transformed_metadata.schema)


# TFX will call this function
def trainer_fn(trainer_fn_args, schema):
  """Build the estimator using the high level API.
  Args:
    trainer_fn_args: Holds args used to train the model as name/value pairs.
    schema: Holds the schema of the training examples.
  Returns:
    A dict of the following:
      - estimator: The estimator that will be used for training and eval.
      - train_spec: Spec for training.
      - eval_spec: Spec for eval.
      - eval_input_receiver_fn: Input function for eval.
  """
  # Number of nodes in the first layer of the DNN
  first_dnn_layer_size = 100
  num_dnn_layers = 4
  dnn_decay_factor = 0.7

  train_batch_size = 40
  eval_batch_size = 40

  tf_transform_graph = tft.TFTransformOutput(trainer_fn_args.transform_output)

  train_input_fn = lambda: _input_fn(  # pylint: disable=g-long-lambda
      trainer_fn_args.train_files,
      trainer_fn_args.data_accessor,
      tf_transform_graph,
      batch_size=train_batch_size)

  eval_input_fn = lambda: _input_fn(  # pylint: disable=g-long-lambda
      trainer_fn_args.eval_files,
      trainer_fn_args.data_accessor,
      tf_transform_graph,
      batch_size=eval_batch_size)

  train_spec = tf.estimator.TrainSpec(  # pylint: disable=g-long-lambda
      train_input_fn,
      max_steps=trainer_fn_args.train_steps)

  serving_receiver_fn = lambda: _example_serving_receiver_fn(  # pylint: disable=g-long-lambda
      tf_transform_graph, schema)

  exporter = tf.estimator.FinalExporter('chicago-taxi', serving_receiver_fn)
  eval_spec = tf.estimator.EvalSpec(
      eval_input_fn,
      steps=trainer_fn_args.eval_steps,
      exporters=[exporter],
      name='chicago-taxi-eval')

  run_config = tf.estimator.RunConfig(
      save_checkpoints_steps=999, keep_checkpoint_max=1)

  run_config = run_config.replace(model_dir=trainer_fn_args.serving_model_dir)

  estimator = _build_estimator(
      # Construct layers sizes with exponetial decay
      hidden_units=[
          max(2, int(first_dnn_layer_size * dnn_decay_factor**i))
          for i in range(num_dnn_layers)
      ],
      config=run_config,
      warm_start_from=trainer_fn_args.base_model)

  # Create an input receiver for TFMA processing
  receiver_fn = lambda: _eval_input_receiver_fn(  # pylint: disable=g-long-lambda
      tf_transform_graph, schema)

  return {
      'estimator': estimator,
      'train_spec': train_spec,
      'eval_spec': eval_spec,
      'eval_input_receiver_fn': receiver_fn
  }
Writing taxi_trainer.py

Maintenant, nous passons dans ce code de modèle pour le Trainer composant et l' exécuter pour former le modèle.

from tfx.components.trainer.executor import Executor
from tfx.dsl.components.base import executor_spec

trainer = tfx.components.Trainer(
    module_file=os.path.abspath(_taxi_trainer_module_file),
    custom_executor_spec=executor_spec.ExecutorClassSpec(Executor),
    examples=transform.outputs['transformed_examples'],
    schema=schema_gen.outputs['schema'],
    transform_graph=transform.outputs['transform_graph'],
    train_args=tfx.proto.TrainArgs(num_steps=10000),
    eval_args=tfx.proto.EvalArgs(num_steps=5000))
context.run(trainer)
WARNING:absl:`custom_executor_spec` is deprecated. Please customize component directly.
INFO:absl:Generating ephemeral wheel package for '/tmpfs/src/temp/docs/tutorials/tfx/taxi_trainer.py' (including modules: ['taxi_constants', 'taxi_trainer', 'taxi_transform']).
INFO:absl:User module package has hash fingerprint version e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '/tmp/tmpfdfqeq3n/_tfx_generated_setup.py', 'bdist_wheel', '--bdist-dir', '/tmp/tmplwndr27q', '--dist-dir', '/tmp/tmpm5jkf1c7']
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/setuptools/command/install.py:37: SetuptoolsDeprecationWarning: setup.py install is deprecated. Use build and pip and other standards-based tools.
  setuptools.SetuptoolsDeprecationWarning,
listing git files failed - pretending there aren't any
INFO:absl:Successfully built user code wheel distribution at '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618-py3-none-any.whl'; target user module is 'taxi_trainer'.
INFO:absl:Full user module path is 'taxi_trainer@/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618-py3-none-any.whl'
INFO:absl:Running driver for Trainer
INFO:absl:MetadataStore with DB connection initialized
I1205 11:00:05.421522  1805 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Running executor for Trainer
I1205 11:00:05.425110  1805 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Train on the 'train' split when train_args.splits is not set.
INFO:absl:Evaluate on the 'eval' split when eval_args.splits is not set.
WARNING:absl:Examples artifact does not have payload_format custom property. Falling back to FORMAT_TF_EXAMPLE
WARNING:absl:Examples artifact does not have payload_format custom property. Falling back to FORMAT_TF_EXAMPLE
WARNING:absl:Examples artifact does not have payload_format custom property. Falling back to FORMAT_TF_EXAMPLE
INFO:absl:udf_utils.get_fn {'train_args': '{\n  "num_steps": 10000\n}', 'eval_args': '{\n  "num_steps": 5000\n}', 'module_file': None, 'run_fn': None, 'trainer_fn': None, 'custom_config': 'null', 'module_path': 'taxi_trainer@/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618-py3-none-any.whl'} 'trainer_fn'
INFO:absl:Installing '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618-py3-none-any.whl' to a temporary directory.
INFO:absl:Executing: ['/tmpfs/src/tf_docs_env/bin/python', '-m', 'pip', 'install', '--target', '/tmp/tmpudspobnm', '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618-py3-none-any.whl']
running bdist_wheel
running build
running build_py
creating build
creating build/lib
copying taxi_constants.py -> build/lib
copying taxi_trainer.py -> build/lib
copying taxi_transform.py -> build/lib
installing to /tmp/tmplwndr27q
running install
running install_lib
copying build/lib/taxi_constants.py -> /tmp/tmplwndr27q
copying build/lib/taxi_transform.py -> /tmp/tmplwndr27q
copying build/lib/taxi_trainer.py -> /tmp/tmplwndr27q
running install_egg_info
running egg_info
creating tfx_user_code_Trainer.egg-info
writing tfx_user_code_Trainer.egg-info/PKG-INFO
writing dependency_links to tfx_user_code_Trainer.egg-info/dependency_links.txt
writing top-level names to tfx_user_code_Trainer.egg-info/top_level.txt
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
reading manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
writing manifest file 'tfx_user_code_Trainer.egg-info/SOURCES.txt'
Copying tfx_user_code_Trainer.egg-info to /tmp/tmplwndr27q/tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618-py3.7.egg-info
running install_scripts
creating /tmp/tmplwndr27q/tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618.dist-info/WHEEL
creating '/tmp/tmpm5jkf1c7/tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618-py3-none-any.whl' and adding '/tmp/tmplwndr27q' to it
adding 'taxi_constants.py'
adding 'taxi_trainer.py'
adding 'taxi_transform.py'
adding 'tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618.dist-info/METADATA'
adding 'tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618.dist-info/WHEEL'
adding 'tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618.dist-info/top_level.txt'
adding 'tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618.dist-info/RECORD'
removing /tmp/tmplwndr27q
Processing /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618-py3-none-any.whl
INFO:absl:Successfully installed '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/_wheels/tfx_user_code_Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618-py3-none-any.whl'.
Installing collected packages: tfx-user-code-Trainer
Successfully installed tfx-user-code-Trainer-0.0+e337a512821685b6d91445dbd0628b47de0e4c751e9e54edf78bcf0866309618
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': 999, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 1, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
INFO:absl:Training model.
INFO:tensorflow:Not using Distribute Coordinator.
INFO:tensorflow:Running training and evaluation locally (non-distributed).
INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps 999 or save_checkpoints_secs None.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
INFO:absl:Feature company has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature fare has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature tips has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month has a shape . Setting to DenseTensor.
INFO:absl:Feature company has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature fare has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature tips has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month has a shape . Setting to DenseTensor.
INFO:tensorflow:Calling model_fn.
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/engine/base_layer_v1.py:1684: UserWarning: `layer.add_variable` is deprecated and will be removed in a future version. Please use `layer.add_weight` method instead.
  warnings.warn('`layer.add_variable` is deprecated and '
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/optimizer_v2/adagrad.py:84: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:loss = 0.7078417, step = 0
INFO:tensorflow:global_step/sec: 70.3244
INFO:tensorflow:loss = 0.54806644, step = 100 (1.423 sec)
INFO:tensorflow:global_step/sec: 86.7936
INFO:tensorflow:loss = 0.61360043, step = 200 (1.152 sec)
INFO:tensorflow:global_step/sec: 85.3687
INFO:tensorflow:loss = 0.4860243, step = 300 (1.171 sec)
INFO:tensorflow:global_step/sec: 86.4491
INFO:tensorflow:loss = 0.4932023, step = 400 (1.157 sec)
INFO:tensorflow:global_step/sec: 84.918
INFO:tensorflow:loss = 0.41420126, step = 500 (1.177 sec)
INFO:tensorflow:global_step/sec: 85.5433
INFO:tensorflow:loss = 0.502645, step = 600 (1.169 sec)
INFO:tensorflow:global_step/sec: 85.7348
INFO:tensorflow:loss = 0.5135077, step = 700 (1.166 sec)
INFO:tensorflow:global_step/sec: 85.9959
INFO:tensorflow:loss = 0.50064766, step = 800 (1.163 sec)
INFO:tensorflow:global_step/sec: 84.4301
INFO:tensorflow:loss = 0.5338023, step = 900 (1.185 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 999...
INFO:tensorflow:Saving checkpoints for 999 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/saver.py:971: remove_checkpoint (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file APIs to delete files with this prefix.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 999...
INFO:absl:Feature company has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature fare has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature tips has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month has a shape . Setting to DenseTensor.
INFO:absl:Feature company has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature fare has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature tips has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month has a shape . Setting to DenseTensor.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2021-12-05T11:00:25
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt-999
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [500/5000]
INFO:tensorflow:Evaluation [1000/5000]
INFO:tensorflow:Evaluation [1500/5000]
INFO:tensorflow:Evaluation [2000/5000]
INFO:tensorflow:Evaluation [2500/5000]
INFO:tensorflow:Evaluation [3000/5000]
INFO:tensorflow:Evaluation [3500/5000]
INFO:tensorflow:Evaluation [4000/5000]
INFO:tensorflow:Evaluation [4500/5000]
INFO:tensorflow:Evaluation [5000/5000]
INFO:tensorflow:Inference Time : 45.25082s
INFO:tensorflow:Finished evaluation at 2021-12-05-11:01:10
INFO:tensorflow:Saving dict for global step 999: accuracy = 0.77114, accuracy_baseline = 0.77114, auc = 0.92330086, auc_precision_recall = 0.66446304, average_loss = 0.46160534, global_step = 999, label/mean = 0.22886, loss = 0.46160552, precision = 0.0, prediction/mean = 0.24982427, recall = 0.0
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 999: /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt-999
INFO:tensorflow:global_step/sec: 2.07624
INFO:tensorflow:loss = 0.5403578, step = 1000 (48.163 sec)
INFO:tensorflow:global_step/sec: 86.3781
INFO:tensorflow:loss = 0.38168782, step = 1100 (1.158 sec)
INFO:tensorflow:global_step/sec: 85.2624
INFO:tensorflow:loss = 0.39346403, step = 1200 (1.173 sec)
INFO:tensorflow:global_step/sec: 83.7912
INFO:tensorflow:loss = 0.40447283, step = 1300 (1.194 sec)
INFO:tensorflow:global_step/sec: 84.0061
INFO:tensorflow:loss = 0.44532022, step = 1400 (1.190 sec)
INFO:tensorflow:global_step/sec: 85.6364
INFO:tensorflow:loss = 0.44722432, step = 1500 (1.169 sec)
INFO:tensorflow:global_step/sec: 86.1981
INFO:tensorflow:loss = 0.38483262, step = 1600 (1.159 sec)
INFO:tensorflow:global_step/sec: 86.8631
INFO:tensorflow:loss = 0.5259759, step = 1700 (1.152 sec)
INFO:tensorflow:global_step/sec: 84.9455
INFO:tensorflow:loss = 0.55505085, step = 1800 (1.177 sec)
INFO:tensorflow:global_step/sec: 86.3588
INFO:tensorflow:loss = 0.38577095, step = 1900 (1.158 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1998...
INFO:tensorflow:Saving checkpoints for 1998 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1998...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 78.271
INFO:tensorflow:loss = 0.5068237, step = 2000 (1.277 sec)
INFO:tensorflow:global_step/sec: 86.0626
INFO:tensorflow:loss = 0.43203792, step = 2100 (1.162 sec)
INFO:tensorflow:global_step/sec: 84.691
INFO:tensorflow:loss = 0.4243142, step = 2200 (1.181 sec)
INFO:tensorflow:global_step/sec: 86.057
INFO:tensorflow:loss = 0.33626375, step = 2300 (1.162 sec)
INFO:tensorflow:global_step/sec: 86.4836
INFO:tensorflow:loss = 0.5215112, step = 2400 (1.156 sec)
INFO:tensorflow:global_step/sec: 86.1571
INFO:tensorflow:loss = 0.3480332, step = 2500 (1.161 sec)
INFO:tensorflow:global_step/sec: 83.5733
INFO:tensorflow:loss = 0.3900601, step = 2600 (1.197 sec)
INFO:tensorflow:global_step/sec: 85.2641
INFO:tensorflow:loss = 0.41936797, step = 2700 (1.174 sec)
INFO:tensorflow:global_step/sec: 84.707
INFO:tensorflow:loss = 0.37252873, step = 2800 (1.179 sec)
INFO:tensorflow:global_step/sec: 84.4798
INFO:tensorflow:loss = 0.38240016, step = 2900 (1.184 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 2997...
INFO:tensorflow:Saving checkpoints for 2997 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 2997...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 75.8418
INFO:tensorflow:loss = 0.2528301, step = 3000 (1.318 sec)
INFO:tensorflow:global_step/sec: 84.156
INFO:tensorflow:loss = 0.4254836, step = 3100 (1.188 sec)
INFO:tensorflow:global_step/sec: 85.0661
INFO:tensorflow:loss = 0.5024188, step = 3200 (1.176 sec)
INFO:tensorflow:global_step/sec: 82.2437
INFO:tensorflow:loss = 0.3909358, step = 3300 (1.216 sec)
INFO:tensorflow:global_step/sec: 82.2637
INFO:tensorflow:loss = 0.328662, step = 3400 (1.216 sec)
INFO:tensorflow:global_step/sec: 84.4683
INFO:tensorflow:loss = 0.36957046, step = 3500 (1.184 sec)
INFO:tensorflow:global_step/sec: 84.4389
INFO:tensorflow:loss = 0.43177825, step = 3600 (1.184 sec)
INFO:tensorflow:global_step/sec: 85.2814
INFO:tensorflow:loss = 0.43844128, step = 3700 (1.173 sec)
INFO:tensorflow:global_step/sec: 83.9934
INFO:tensorflow:loss = 0.3894402, step = 3800 (1.191 sec)
INFO:tensorflow:global_step/sec: 85.6644
INFO:tensorflow:loss = 0.3499531, step = 3900 (1.167 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 3996...
INFO:tensorflow:Saving checkpoints for 3996 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 3996...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 77.2294
INFO:tensorflow:loss = 0.43472967, step = 4000 (1.294 sec)
INFO:tensorflow:global_step/sec: 86.9355
INFO:tensorflow:loss = 0.31338528, step = 4100 (1.151 sec)
INFO:tensorflow:global_step/sec: 86.7796
INFO:tensorflow:loss = 0.45728058, step = 4200 (1.152 sec)
INFO:tensorflow:global_step/sec: 86.8483
INFO:tensorflow:loss = 0.39699784, step = 4300 (1.151 sec)
INFO:tensorflow:global_step/sec: 87.1248
INFO:tensorflow:loss = 0.43616992, step = 4400 (1.148 sec)
INFO:tensorflow:global_step/sec: 86.8816
INFO:tensorflow:loss = 0.35230064, step = 4500 (1.151 sec)
INFO:tensorflow:global_step/sec: 86.9788
INFO:tensorflow:loss = 0.36814964, step = 4600 (1.150 sec)
INFO:tensorflow:global_step/sec: 86.884
INFO:tensorflow:loss = 0.39265686, step = 4700 (1.151 sec)
INFO:tensorflow:global_step/sec: 86.3142
INFO:tensorflow:loss = 0.3569767, step = 4800 (1.159 sec)
INFO:tensorflow:global_step/sec: 86.7831
INFO:tensorflow:loss = 0.38372093, step = 4900 (1.152 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 4995...
INFO:tensorflow:Saving checkpoints for 4995 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 4995...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 77.8516
INFO:tensorflow:loss = 0.37753737, step = 5000 (1.284 sec)
INFO:tensorflow:global_step/sec: 86.9472
INFO:tensorflow:loss = 0.39870018, step = 5100 (1.150 sec)
INFO:tensorflow:global_step/sec: 87.6235
INFO:tensorflow:loss = 0.3469496, step = 5200 (1.141 sec)
INFO:tensorflow:global_step/sec: 85.5072
INFO:tensorflow:loss = 0.4431352, step = 5300 (1.169 sec)
INFO:tensorflow:global_step/sec: 86.753
INFO:tensorflow:loss = 0.4120473, step = 5400 (1.153 sec)
INFO:tensorflow:global_step/sec: 87.9292
INFO:tensorflow:loss = 0.41318005, step = 5500 (1.137 sec)
INFO:tensorflow:global_step/sec: 86.9944
INFO:tensorflow:loss = 0.33395153, step = 5600 (1.150 sec)
INFO:tensorflow:global_step/sec: 85.7159
INFO:tensorflow:loss = 0.39095598, step = 5700 (1.167 sec)
INFO:tensorflow:global_step/sec: 86.5248
INFO:tensorflow:loss = 0.3990689, step = 5800 (1.156 sec)
INFO:tensorflow:global_step/sec: 87.7908
INFO:tensorflow:loss = 0.35857546, step = 5900 (1.139 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 5994...
INFO:tensorflow:Saving checkpoints for 5994 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 5994...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 77.8735
INFO:tensorflow:loss = 0.3701624, step = 6000 (1.284 sec)
INFO:tensorflow:global_step/sec: 87.5076
INFO:tensorflow:loss = 0.41708413, step = 6100 (1.143 sec)
INFO:tensorflow:global_step/sec: 84.466
INFO:tensorflow:loss = 0.29821724, step = 6200 (1.184 sec)
INFO:tensorflow:global_step/sec: 83.526
INFO:tensorflow:loss = 0.35562894, step = 6300 (1.197 sec)
INFO:tensorflow:global_step/sec: 87.5455
INFO:tensorflow:loss = 0.28250116, step = 6400 (1.142 sec)
INFO:tensorflow:global_step/sec: 86.3403
INFO:tensorflow:loss = 0.3280113, step = 6500 (1.158 sec)
INFO:tensorflow:global_step/sec: 87.024
INFO:tensorflow:loss = 0.3482268, step = 6600 (1.149 sec)
INFO:tensorflow:global_step/sec: 85.355
INFO:tensorflow:loss = 0.37907737, step = 6700 (1.172 sec)
INFO:tensorflow:global_step/sec: 84.621
INFO:tensorflow:loss = 0.31550306, step = 6800 (1.182 sec)
INFO:tensorflow:global_step/sec: 83.3363
INFO:tensorflow:loss = 0.3832593, step = 6900 (1.202 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 6993...
INFO:tensorflow:Saving checkpoints for 6993 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 6993...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 74.4455
INFO:tensorflow:loss = 0.41803008, step = 7000 (1.342 sec)
INFO:tensorflow:global_step/sec: 82.7229
INFO:tensorflow:loss = 0.32837537, step = 7100 (1.209 sec)
INFO:tensorflow:global_step/sec: 84.3715
INFO:tensorflow:loss = 0.33435482, step = 7200 (1.185 sec)
INFO:tensorflow:global_step/sec: 84.2735
INFO:tensorflow:loss = 0.26065814, step = 7300 (1.187 sec)
INFO:tensorflow:global_step/sec: 85.663
INFO:tensorflow:loss = 0.41420022, step = 7400 (1.167 sec)
INFO:tensorflow:global_step/sec: 87.0079
INFO:tensorflow:loss = 0.40608707, step = 7500 (1.150 sec)
INFO:tensorflow:global_step/sec: 87.7408
INFO:tensorflow:loss = 0.36437988, step = 7600 (1.140 sec)
INFO:tensorflow:global_step/sec: 87.4937
INFO:tensorflow:loss = 0.39505738, step = 7700 (1.144 sec)
INFO:tensorflow:global_step/sec: 88.4098
INFO:tensorflow:loss = 0.2943158, step = 7800 (1.130 sec)
INFO:tensorflow:global_step/sec: 87.3161
INFO:tensorflow:loss = 0.352277, step = 7900 (1.145 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 7992...
INFO:tensorflow:Saving checkpoints for 7992 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 7992...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 78.0033
INFO:tensorflow:loss = 0.24916664, step = 8000 (1.282 sec)
INFO:tensorflow:global_step/sec: 87.818
INFO:tensorflow:loss = 0.23849675, step = 8100 (1.139 sec)
INFO:tensorflow:global_step/sec: 86.7864
INFO:tensorflow:loss = 0.35711345, step = 8200 (1.152 sec)
INFO:tensorflow:global_step/sec: 87.5709
INFO:tensorflow:loss = 0.3992316, step = 8300 (1.142 sec)
INFO:tensorflow:global_step/sec: 86.4715
INFO:tensorflow:loss = 0.38699418, step = 8400 (1.157 sec)
INFO:tensorflow:global_step/sec: 87.1347
INFO:tensorflow:loss = 0.27517205, step = 8500 (1.147 sec)
INFO:tensorflow:global_step/sec: 87.6778
INFO:tensorflow:loss = 0.3764573, step = 8600 (1.140 sec)
INFO:tensorflow:global_step/sec: 86.488
INFO:tensorflow:loss = 0.38588572, step = 8700 (1.156 sec)
INFO:tensorflow:global_step/sec: 88.0878
INFO:tensorflow:loss = 0.34926754, step = 8800 (1.135 sec)
INFO:tensorflow:global_step/sec: 86.5916
INFO:tensorflow:loss = 0.3552958, step = 8900 (1.155 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 8991...
INFO:tensorflow:Saving checkpoints for 8991 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 8991...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:global_step/sec: 75.4932
INFO:tensorflow:loss = 0.36349216, step = 9000 (1.325 sec)
INFO:tensorflow:global_step/sec: 83.4161
INFO:tensorflow:loss = 0.35490102, step = 9100 (1.199 sec)
INFO:tensorflow:global_step/sec: 87.0142
INFO:tensorflow:loss = 0.36661166, step = 9200 (1.149 sec)
INFO:tensorflow:global_step/sec: 86.8802
INFO:tensorflow:loss = 0.42985326, step = 9300 (1.151 sec)
INFO:tensorflow:global_step/sec: 87.3449
INFO:tensorflow:loss = 0.47281235, step = 9400 (1.145 sec)
INFO:tensorflow:global_step/sec: 88.3826
INFO:tensorflow:loss = 0.22590041, step = 9500 (1.131 sec)
INFO:tensorflow:global_step/sec: 87.3166
INFO:tensorflow:loss = 0.4162217, step = 9600 (1.145 sec)
INFO:tensorflow:global_step/sec: 87.5265
INFO:tensorflow:loss = 0.37611717, step = 9700 (1.143 sec)
INFO:tensorflow:global_step/sec: 86.1899
INFO:tensorflow:loss = 0.3856167, step = 9800 (1.160 sec)
INFO:tensorflow:global_step/sec: 87.7519
INFO:tensorflow:loss = 0.24105208, step = 9900 (1.140 sec)
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 9990...
INFO:tensorflow:Saving checkpoints for 9990 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 9990...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 10000...
INFO:tensorflow:Saving checkpoints for 10000 into /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 10000...
INFO:tensorflow:Skip the current checkpoint eval due to throttle secs (600 secs).
INFO:absl:Feature company has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature fare has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature tips has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month has a shape . Setting to DenseTensor.
INFO:absl:Feature company has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature dropoff_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature fare has a shape . Setting to DenseTensor.
INFO:absl:Feature payment_type has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_census_tract has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_community_area has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_latitude has a shape . Setting to DenseTensor.
INFO:absl:Feature pickup_longitude has a shape . Setting to DenseTensor.
INFO:absl:Feature tips has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_miles has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_seconds has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_day has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_hour has a shape . Setting to DenseTensor.
INFO:absl:Feature trip_start_month has a shape . Setting to DenseTensor.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2021-12-05T11:02:58
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt-10000
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [500/5000]
INFO:tensorflow:Evaluation [1000/5000]
INFO:tensorflow:Evaluation [1500/5000]
INFO:tensorflow:Evaluation [2000/5000]
INFO:tensorflow:Evaluation [2500/5000]
INFO:tensorflow:Evaluation [3000/5000]
INFO:tensorflow:Evaluation [3500/5000]
INFO:tensorflow:Evaluation [4000/5000]
INFO:tensorflow:Evaluation [4500/5000]
INFO:tensorflow:Evaluation [5000/5000]
INFO:tensorflow:Inference Time : 43.13040s
INFO:tensorflow:Finished evaluation at 2021-12-05-11:03:41
INFO:tensorflow:Saving dict for global step 10000: accuracy = 0.787805, accuracy_baseline = 0.771235, auc = 0.9339468, auc_precision_recall = 0.70544505, average_loss = 0.3452758, global_step = 10000, label/mean = 0.228765, loss = 0.34527487, precision = 0.69398266, prediction/mean = 0.2301482, recall = 0.12956527
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 10000: /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt-10000
INFO:tensorflow:Performing the final export in the end of training.
INFO:tensorflow:tensorflow_text is not available.
INFO:tensorflow:tensorflow_decision_forests is not available.
INFO:tensorflow:struct2tensor is not available.
WARNING:tensorflow:Loading a TF2 SavedModel but eager mode seems disabled.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/saved_model/signature_def_utils_impl.py:145: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version.
Instructions for updating:
This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info.
INFO:tensorflow:Signatures INCLUDED in export for Classify: ['serving_default', 'classification']
INFO:tensorflow:Signatures INCLUDED in export for Regress: ['regression']
INFO:tensorflow:Signatures INCLUDED in export for Predict: ['predict']
INFO:tensorflow:Signatures INCLUDED in export for Train: None
INFO:tensorflow:Signatures INCLUDED in export for Eval: None
INFO:tensorflow:Restoring parameters from /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt-10000
INFO:tensorflow:Assets added to graph.
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/export/chicago-taxi/temp-1638702221/assets
INFO:tensorflow:SavedModel written to: /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/export/chicago-taxi/temp-1638702221/saved_model.pb
INFO:tensorflow:Loss for final step: 0.3770034.
INFO:absl:Training complete. Model written to /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving. ModelRun written to /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6
INFO:absl:Exporting eval_savedmodel for TFMA.
WARNING:tensorflow:Loading a TF2 SavedModel but eager mode seems disabled.
INFO:tensorflow:tensorflow_text is not available.
INFO:tensorflow:tensorflow_decision_forests is not available.
INFO:tensorflow:struct2tensor is not available.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Signatures INCLUDED in export for Classify: None
INFO:tensorflow:Signatures INCLUDED in export for Regress: None
INFO:tensorflow:Signatures INCLUDED in export for Predict: None
INFO:tensorflow:Signatures INCLUDED in export for Train: None
INFO:tensorflow:Signatures INCLUDED in export for Eval: ['eval']
WARNING:tensorflow:Export includes no default signature!
INFO:tensorflow:Restoring parameters from /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-Serving/model.ckpt-10000
INFO:tensorflow:Assets added to graph.
INFO:tensorflow:Assets written to: /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-TFMA/temp-1638702224/assets
INFO:tensorflow:SavedModel written to: /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-TFMA/temp-1638702224/saved_model.pb
INFO:absl:Exported eval_savedmodel to /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model_run/6/Format-TFMA.
WARNING:absl:Support for estimator-based executor and model export will be deprecated soon. Please use export structure <ModelExportPath>/serving_model_dir/saved_model.pb"
INFO:absl:Serving model copied to: /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model/6/Format-Serving.
WARNING:absl:Support for estimator-based executor and model export will be deprecated soon. Please use export structure <ModelExportPath>/eval_model_dir/saved_model.pb"
INFO:absl:Eval model copied to: /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model/6/Format-TFMA.
INFO:absl:Running publisher for Trainer
INFO:absl:MetadataStore with DB connection initialized

Analyser la formation avec TensorBoard

En option, nous pouvons connecter TensorBoard au Trainer pour analyser les courbes d'entraînement de notre modèle.

# Get the URI of the output artifact representing the training logs, which is a directory
model_run_dir = trainer.outputs['model_run'].get()[0].uri

%load_ext tensorboard
%tensorboard --logdir {model_run_dir}

Évaluateur

Le Evaluator composant calcule des indicateurs de performance modèle sur l'ensemble de l' évaluation. Il utilise le modèle d' analyse tensorflow bibliothèque. Le Evaluator peut également en option valider qu'un nouveau modèle formé est mieux que le modèle précédent. Ceci est utile dans un environnement de pipeline de production où vous pouvez automatiquement entraîner et valider un modèle chaque jour. Dans ce cahier, nous formons un seul modèle, de sorte que le Evaluator automatiquement étiqueter le modèle comme « bon ».

Evaluator prendra en entrée les données de ExampleGen , le modèle formé du Trainer et la configuration de coupe. La configuration de découpage vous permet de trancher vos métriques sur des valeurs de caractéristiques (par exemple, comment votre modèle se comporte-t-il sur les trajets en taxi qui commencent à 8h par rapport à 20h ?). Voir un exemple de cette configuration ci-dessous :

eval_config = tfma.EvalConfig(
    model_specs=[
        # Using signature 'eval' implies the use of an EvalSavedModel. To use
        # a serving model remove the signature to defaults to 'serving_default'
        # and add a label_key.
        tfma.ModelSpec(signature_name='eval')
    ],
    metrics_specs=[
        tfma.MetricsSpec(
            # The metrics added here are in addition to those saved with the
            # model (assuming either a keras model or EvalSavedModel is used).
            # Any metrics added into the saved model (for example using
            # model.compile(..., metrics=[...]), etc) will be computed
            # automatically.
            metrics=[
                tfma.MetricConfig(class_name='ExampleCount')
            ],
            # To add validation thresholds for metrics saved with the model,
            # add them keyed by metric name to the thresholds map.
            thresholds = {
                'accuracy': tfma.MetricThreshold(
                    value_threshold=tfma.GenericValueThreshold(
                        lower_bound={'value': 0.5}),
                    # Change threshold will be ignored if there is no
                    # baseline model resolved from MLMD (first run).
                    change_threshold=tfma.GenericChangeThreshold(
                       direction=tfma.MetricDirection.HIGHER_IS_BETTER,
                       absolute={'value': -1e-10}))
            }
        )
    ],
    slicing_specs=[
        # An empty slice spec means the overall slice, i.e. the whole dataset.
        tfma.SlicingSpec(),
        # Data can be sliced along a feature column. In this case, data is
        # sliced along feature column trip_start_hour.
        tfma.SlicingSpec(feature_keys=['trip_start_hour'])
    ])

Ensuite, nous donnons cette configuration Evaluator et l' exécuter.

# Use TFMA to compute a evaluation statistics over features of a model and
# validate them against a baseline.

# The model resolver is only required if performing model validation in addition
# to evaluation. In this case we validate against the latest blessed model. If
# no model has been blessed before (as in this case) the evaluator will make our
# candidate the first blessed model.
model_resolver = tfx.dsl.Resolver(
      strategy_class=tfx.dsl.experimental.LatestBlessedModelStrategy,
      model=tfx.dsl.Channel(type=tfx.types.standard_artifacts.Model),
      model_blessing=tfx.dsl.Channel(
          type=tfx.types.standard_artifacts.ModelBlessing)).with_id(
              'latest_blessed_model_resolver')
context.run(model_resolver)

evaluator = tfx.components.Evaluator(
    examples=example_gen.outputs['examples'],
    model=trainer.outputs['model'],
    eval_config=eval_config)
context.run(evaluator)
INFO:absl:Running driver for latest_blessed_model_resolver
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running publisher for latest_blessed_model_resolver
INFO:absl:MetadataStore with DB connection initialized
INFO:absl:Running driver for Evaluator
INFO:absl:MetadataStore with DB connection initialized
I1205 11:03:46.279654  1805 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Running executor for Evaluator
I1205 11:03:46.282887  1805 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Nonempty beam arg extra_packages already includes dependency
INFO:absl:udf_utils.get_fn {'eval_config': '{\n  "metrics_specs": [\n    {\n      "metrics": [\n        {\n          "class_name": "ExampleCount"\n        }\n      ],\n      "thresholds": {\n        "accuracy": {\n          "change_threshold": {\n            "absolute": -1e-10,\n            "direction": "HIGHER_IS_BETTER"\n          },\n          "value_threshold": {\n            "lower_bound": 0.5\n          }\n        }\n      }\n    }\n  ],\n  "model_specs": [\n    {\n      "signature_name": "eval"\n    }\n  ],\n  "slicing_specs": [\n    {},\n    {\n      "feature_keys": [\n        "trip_start_hour"\n      ]\n    }\n  ]\n}', 'feature_slicing_spec': None, 'fairness_indicator_thresholds': 'null', 'example_splits': 'null', 'module_file': None, 'module_path': None} 'custom_eval_shared_model'
INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  signature_name: "eval"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "trip_start_hour"
}
metrics_specs {
  metrics {
    class_name: "ExampleCount"
  }
  thresholds {
    key: "accuracy"
    value {
      value_threshold {
        lower_bound {
          value: 0.5
        }
      }
    }
  }
}

INFO:absl:Using /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model/6/Format-TFMA as  model.
WARNING:tensorflow:SavedModel saved prior to TF 2.5 detected when loading Keras model. Please ensure that you are saving the model with model.save() or tf.keras.models.save_model(), *NOT* tf.saved_model.save(). To confirm, there should be a file named "keras_metadata.pb" in the SavedModel directory.
INFO:absl:The 'example_splits' parameter is not set, using 'eval' split.
INFO:absl:Evaluating model.
INFO:absl:udf_utils.get_fn {'eval_config': '{\n  "metrics_specs": [\n    {\n      "metrics": [\n        {\n          "class_name": "ExampleCount"\n        }\n      ],\n      "thresholds": {\n        "accuracy": {\n          "change_threshold": {\n            "absolute": -1e-10,\n            "direction": "HIGHER_IS_BETTER"\n          },\n          "value_threshold": {\n            "lower_bound": 0.5\n          }\n        }\n      }\n    }\n  ],\n  "model_specs": [\n    {\n      "signature_name": "eval"\n    }\n  ],\n  "slicing_specs": [\n    {},\n    {\n      "feature_keys": [\n        "trip_start_hour"\n      ]\n    }\n  ]\n}', 'feature_slicing_spec': None, 'fairness_indicator_thresholds': 'null', 'example_splits': 'null', 'module_file': None, 'module_path': None} 'custom_extractors'
INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  signature_name: "eval"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "trip_start_hour"
}
metrics_specs {
  metrics {
    class_name: "ExampleCount"
  }
  model_names: ""
  thresholds {
    key: "accuracy"
    value {
      value_threshold {
        lower_bound {
          value: 0.5
        }
      }
    }
  }
}

INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  signature_name: "eval"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "trip_start_hour"
}
metrics_specs {
  metrics {
    class_name: "ExampleCount"
  }
  model_names: ""
  thresholds {
    key: "accuracy"
    value {
      value_threshold {
        lower_bound {
          value: 0.5
        }
      }
    }
  }
}

INFO:absl:Request was made to ignore the baseline ModelSpec and any change thresholds. This is likely because a baseline model was not provided: updated_config=
model_specs {
  signature_name: "eval"
}
slicing_specs {
}
slicing_specs {
  feature_keys: "trip_start_hour"
}
metrics_specs {
  metrics {
    class_name: "ExampleCount"
  }
  model_names: ""
  thresholds {
    key: "accuracy"
    value {
      value_threshold {
        lower_bound {
          value: 0.5
        }
      }
    }
  }
}

WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/eval_saved_model/load.py:169: load (from tensorflow.python.saved_model.loader_impl) is deprecated and will be removed in a future version.
Instructions for updating:
This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.loader.load or tf.compat.v1.saved_model.load. There will be a new function for importing SavedModels in Tensorflow 2.0.
INFO:tensorflow:Restoring parameters from /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model/6/Format-TFMA/variables/variables
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/eval_saved_model/graph_ref.py:189: get_tensor_from_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version.
Instructions for updating:
This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.get_tensor_from_tensor_info or tf.compat.v1.saved_model.get_tensor_from_tensor_info.
INFO:absl:Evaluation complete. Results written to /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Evaluator/evaluation/8.
INFO:absl:Checking validation results.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:114: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version.
Instructions for updating:
Use eager execution and: 
`tf.data.TFRecordDataset(path)`
INFO:absl:Blessing result True written to /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Evaluator/blessing/8.
INFO:absl:Running publisher for Evaluator
INFO:absl:MetadataStore with DB connection initialized

Maintenant , nous allons examiner les artefacts de sortie de Evaluator .

evaluator.outputs
{'evaluation': Channel(
     type_name: ModelEvaluation
     artifacts: [Artifact(artifact: id: 15
 type_id: 29
 uri: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Evaluator/evaluation/8"
 custom_properties {
   key: "name"
   value {
     string_value: "evaluation"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Evaluator"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.4.0"
   }
 }
 state: LIVE
 , artifact_type: id: 29
 name: "ModelEvaluation"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 ),
 'blessing': Channel(
     type_name: ModelBlessing
     artifacts: [Artifact(artifact: id: 16
 type_id: 30
 uri: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Evaluator/blessing/8"
 custom_properties {
   key: "blessed"
   value {
     int_value: 1
   }
 }
 custom_properties {
   key: "current_model"
   value {
     string_value: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Trainer/model/6"
   }
 }
 custom_properties {
   key: "current_model_id"
   value {
     int_value: 13
   }
 }
 custom_properties {
   key: "name"
   value {
     string_value: "blessing"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Evaluator"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.4.0"
   }
 }
 state: LIVE
 , artifact_type: id: 30
 name: "ModelBlessing"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 )}

Utilisation de l' evaluation sortie , nous pouvons montrer la visualisation par défaut des indicateurs globaux sur l'ensemble complet d'évaluation.

context.show(evaluator.outputs['evaluation'])

Pour voir la visualisation des métriques d'évaluation en tranches, nous pouvons appeler directement la bibliothèque TensorFlow Model Analysis.

import tensorflow_model_analysis as tfma

# Get the TFMA output result path and load the result.
PATH_TO_RESULT = evaluator.outputs['evaluation'].get()[0].uri
tfma_result = tfma.load_eval_result(PATH_TO_RESULT)

# Show data sliced along feature column trip_start_hour.
tfma.view.render_slicing_metrics(
    tfma_result, slicing_column='trip_start_hour')
SlicingMetricsViewer(config={'weightedExamplesColumn': 'example_count'}, data=[{'slice': 'trip_start_hour:19',…

Cette visualisation présente les mêmes paramètres, mais ont été calculés à chaque valeur caractéristique de trip_start_hour plutôt que sur l'ensemble complet d'évaluation.

L'analyse de modèle TensorFlow prend en charge de nombreuses autres visualisations, telles que les indicateurs d'équité et le tracé d'une série chronologique des performances du modèle. Pour en savoir plus, voir le tutoriel .

Puisque nous avons ajouté des seuils à notre configuration, la sortie de validation est également disponible. Le precence d'une blessing artefact indique que notre modèle a passé la validation. Comme il s'agit de la première validation effectuée, le candidat est automatiquement béni.

blessing_uri = evaluator.outputs['blessing'].get()[0].uri
!ls -l {blessing_uri}
total 0
-rw-rw-r-- 1 kbuilder kbuilder 0 Dec  5 11:03 BLESSED

Maintenant, vous pouvez également vérifier le succès en chargeant l'enregistrement du résultat de la validation :

PATH_TO_RESULT = evaluator.outputs['evaluation'].get()[0].uri
print(tfma.load_validation_result(PATH_TO_RESULT))
validation_ok: true
validation_details {
  slicing_details {
    slicing_spec {
    }
    num_matching_slices: 25
  }
}

Poussoir

Le Pusher composant est généralement à la fin d'un pipeline de TFX. Il vérifie si un modèle a été validé, et si oui, les exportations du modèle à _serving_model_dir .

pusher = tfx.components.Pusher(
    model=trainer.outputs['model'],
    model_blessing=evaluator.outputs['blessing'],
    push_destination=tfx.proto.PushDestination(
        filesystem=tfx.proto.PushDestination.Filesystem(
            base_directory=_serving_model_dir)))
context.run(pusher)
INFO:absl:Running driver for Pusher
INFO:absl:MetadataStore with DB connection initialized
I1205 11:03:54.694877  1805 rdbms_metadata_access_object.cc:686] No property is defined for the Type
INFO:absl:Running executor for Pusher
INFO:absl:Model version: 1638702234
INFO:absl:Model written to serving path /tmp/tmposmo4233/serving_model/taxi_simple/1638702234.
INFO:absl:Model pushed to /tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Pusher/pushed_model/9.
INFO:absl:Running publisher for Pusher
INFO:absl:MetadataStore with DB connection initialized

Examinons les artefacts de sortie de Pusher .

pusher.outputs
{'pushed_model': Channel(
     type_name: PushedModel
     artifacts: [Artifact(artifact: id: 17
 type_id: 32
 uri: "/tmp/tfx-interactive-2021-12-05T10_59_24.898354-se36qxc4/Pusher/pushed_model/9"
 custom_properties {
   key: "name"
   value {
     string_value: "pushed_model"
   }
 }
 custom_properties {
   key: "producer_component"
   value {
     string_value: "Pusher"
   }
 }
 custom_properties {
   key: "pushed"
   value {
     int_value: 1
   }
 }
 custom_properties {
   key: "pushed_destination"
   value {
     string_value: "/tmp/tmposmo4233/serving_model/taxi_simple/1638702234"
   }
 }
 custom_properties {
   key: "pushed_version"
   value {
     string_value: "1638702234"
   }
 }
 custom_properties {
   key: "state"
   value {
     string_value: "published"
   }
 }
 custom_properties {
   key: "tfx_version"
   value {
     string_value: "1.4.0"
   }
 }
 state: LIVE
 , artifact_type: id: 32
 name: "PushedModel"
 )]
     additional_properties: {}
     additional_custom_properties: {}
 )}

En particulier, le Pusher exportera votre modèle au format SavedModel, qui ressemble à ceci :

push_uri = pusher.outputs['pushed_model'].get()[0].uri
model = tf.saved_model.load(push_uri)

for item in model.signatures.items():
  pp.pprint(item)
('regression', <ConcreteFunction pruned(inputs) at 0x7F19BF0F9510>)
('classification', <ConcreteFunction pruned(inputs) at 0x7F19BE0EC350>)
('serving_default', <ConcreteFunction pruned(inputs) at 0x7F19BC6BE210>)
('predict', <ConcreteFunction pruned(examples) at 0x7F19BC4F9090>)

Nous avons terminé notre visite des composants TFX intégrés !