View source on GitHub |
Computes the grayscale dilation of 4-D input
and 3-D filter
tensors.
tf.compat.v1.nn.dilation2d(
input,
filter=None,
strides=None,
rates=None,
padding=None,
name=None,
filters=None,
dilations=None
)
The input
tensor has shape [batch, in_height, in_width, depth]
and the
filter
tensor has shape [filter_height, filter_width, depth]
, i.e., each
input channel is processed independently of the others with its own structuring
function. The output
tensor has shape
[batch, out_height, out_width, depth]
. The spatial dimensions of the output
tensor depend on the padding
algorithm. We currently only support the default
"NHWC" data_format
.
In detail, the grayscale morphological 2-D dilation is the max-sum correlation
(for consistency with conv2d
, we use unmirrored filters):
output[b, y, x, c] =
max_{dy, dx} input[b,
strides[1] * y + rates[1] * dy,
strides[2] * x + rates[2] * dx,
c] +
filter[dy, dx, c]
Max-pooling is a special case when the filter has size equal to the pooling kernel size and contains all zeros.
Note on duality: The dilation of input
by the filter
is equal to the
negation of the erosion of -input
by the reflected filter
.
Returns | |
---|---|
A Tensor . Has the same type as input .
|