tf.feature_column.categorical_column_with_hash_bucket

Represents sparse feature where ids are set by hashing. (deprecated)

Use this when your sparse features are in string or integer format, and you want to distribute your inputs into a finite number of buckets by hashing. output_id = Hash(input_feature_string) % bucket_size for string type input. For int type input, the value is converted to its string representation first and then hashed by the same formula.

For input dictionary features, features[key] is either Tensor or SparseTensor. If Tensor, missing values can be represented by -1 for int and '' for string, which will be dropped by this feature column.

Example:

import tensorflow as tf
keywords = tf.feature_column.categorical_column_with_hash_bucket("keywords",
10000)
columns = [keywords]
features = {'keywords': tf.constant([['Tensorflow', 'Keras', 'RNN', 'LSTM',
'CNN'], ['LSTM', 'CNN', 'Tensorflow', 'Keras', 'RNN'], ['CNN', 'Tensorflow',
'LSTM', 'Keras', 'RNN']])}
linear_prediction, _, _ = tf.compat.v1.feature_column.linear_model(features,
columns)

# or
import tensorflow as tf
keywords = tf.feature_column.categorical_column_with_hash_bucket("keywords",
10000)
keywords_embedded = tf.feature_column.embedding_column(keywords, 16)
columns = [keywords_embedded]
features = {'keywords': tf.constant([['Tensorflow', 'Keras', 'RNN', 'LSTM',
'CNN'], ['LSTM', 'CNN', 'Tensorflow', 'Keras', 'RNN'], ['CNN', 'Tensorflow',
'LSTM', 'Keras', 'RNN']])}
input_layer = tf.keras.layers.DenseFeatures(columns)
dense_tensor = input_layer(features)

key A unique string identifying the input feature. It is used as the column name and the dictionary key for feature parsing configs, feature Tensor objects, and feature columns.
hash_bucket_size An int > 1. The number of buckets.
dtype The type of features. Only string and integer types are supported.

A HashedCategoricalColumn.

ValueError hash_bucket_size is not greater than 1.
ValueError dtype is neither string nor integer.