View source on GitHub |
Instantiates the MobileNetV2 architecture.
tf.keras.applications.mobilenet_v2.MobileNetV2(
input_shape=None,
alpha=1.0,
include_top=True,
weights='imagenet',
input_tensor=None,
pooling=None,
classes=1000,
classifier_activation='softmax',
**kwargs
)
MobileNetV2 is very similar to the original MobileNet, except that it uses inverted residual blocks with bottlenecking features. It has a drastically lower parameter count than the original MobileNet. MobileNets support any input size greater than 32 x 32, with larger image sizes offering better performance.
Reference:
This function returns a Keras image classification model, optionally loaded with weights pre-trained on ImageNet.
For image classification use cases, see this page for detailed examples.
For transfer learning use cases, make sure to read the guide to transfer learning & fine-tuning.
Args | |
---|---|
input_shape
|
Optional shape tuple, to be specified if you would
like to use a model with an input image resolution that is not
(224, 224, 3).
It should have exactly 3 inputs channels (224, 224, 3).
You can also omit this option if you would like
to infer input_shape from an input_tensor.
If you choose to include both input_tensor and input_shape then
input_shape will be used if they match, if the shapes
do not match then we will throw an error.
E.g. (160, 160, 3) would be one valid value.
|
alpha
|
Float, larger than zero, controls the width of the network. This is
known as the width multiplier in the MobileNetV2 paper, but the name is
kept for consistency with applications.MobileNetV1 model in Keras.
|
include_top
|
Boolean, whether to include the fully-connected layer at the
top of the network. Defaults to True .
|
weights
|
String, one of None (random initialization), 'imagenet'
(pre-training on ImageNet), or the path to the weights file to be
loaded.
|
input_tensor
|
Optional Keras tensor (i.e. output of layers.Input() )
to use as image input for the model.
|
pooling
|
String, optional pooling mode for feature extraction when
include_top is False .
None means that the output of the model
will be the 4D tensor output of the
last convolutional block.avg means that global average pooling
will be applied to the output of the
last convolutional block, and thus
the output of the model will be a
2D tensor.max means that global max pooling will
be applied.
|
classes
|
Optional integer number of classes to classify images into, only
to be specified if include_top is True, and if no weights argument
is specified.
|
classifier_activation
|
A str or callable. The activation function to use
on the "top" layer. Ignored unless include_top=True . Set
classifier_activation=None to return the logits of the "top" layer.
When loading pretrained weights, classifier_activation can only
be None or "softmax" .
|
**kwargs
|
For backwards compatibility only. |
Returns | |
---|---|
A keras.Model instance.
|