tf.keras.initializers.RandomUniform

Initializer that generates tensors with a uniform distribution.

Inherits From: Initializer

Also available via the shortcut function tf.keras.initializers.random_uniform.

Examples:

# Standalone usage:
initializer = tf.keras.initializers.RandomUniform(minval=0., maxval=1.)
values = initializer(shape=(2, 2))
# Usage in a Keras layer:
initializer = tf.keras.initializers.RandomUniform(minval=0., maxval=1.)
layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)

minval A python scalar or a scalar tensor. Lower bound of the range of random values to generate (inclusive).
maxval A python scalar or a scalar tensor. Upper bound of the range of random values to generate (exclusive).
seed A Python integer. Used to make the behavior of the initializer deterministic. Note that a seeded initializer will produce the same random values across multiple calls.

Methods

from_config

View source

Instantiates an initializer from a configuration dictionary.

Example:

initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)

Args
config A Python dictionary, the output of get_config.

Returns
A tf.keras.initializers.Initializer instance.

get_config

View source

Returns the initializer's configuration as a JSON-serializable dict.

Returns
A JSON-serializable Python dict.

__call__

View source

Returns a tensor object initialized as specified by the initializer.

Args
shape Shape of the tensor.
dtype Optional dtype of the tensor. Only floating point and integer types are supported. If not specified, tf.keras.backend.floatx() is used, which default to float32 unless you configured it otherwise (via tf.keras.backend.set_floatx(float_dtype)).
**kwargs Additional keyword arguments.