¡Reserva! Google I / O regresa del 18 al 20 de mayo Regístrese ahora
Se usó la API de Cloud Translation para traducir esta página.
Switch to English

tensorflow :: operaciones :: MatrixDiagV3

#include <array_ops.h>

Devuelve un tensor diagonal por lotes con valores diagonales por lotes dados.

Resumen

Devuelve un tensor con el contenido en diagonal como diagonal k[0] a k[1] -ésima de una matriz, con todo lo demás relleno con padding . num_rows y num_cols especifican la dimensión de la matriz más interna de la salida. Si no se especifican ambos, la operación asume que la matriz más interna es cuadrada e infiere su tamaño de k y la dimensión más interna de la diagonal . Si solo se especifica uno de ellos, la operación asume que el valor no especificado es el más pequeño posible según otros criterios.

Deje que la diagonal tenga r dimensiones [I, J, ..., L, M, N] . El tensor de salida tiene rango r+1 con forma [I, J, ..., L, M, num_rows, num_cols] cuando solo se da una diagonal ( k es un número entero o k[0] == k[1] ) . De lo contrario, tiene rango r con forma [I, J, ..., L, num_rows, num_cols] .

La segunda dimensión más interna de la diagonal tiene un doble significado. Cuando k es escalar o k[0] == k[1] , M es parte del tamaño del lote [I, J, ..., M] y el tensor de salida es:

output[i, j, ..., l, m, n]
  = diagonal[i, j, ..., l, n-max(d_upper, 0)] ; if n - m == d_upper
    padding_value                             ; otherwise

De lo contrario, M se trata como el número de diagonales de la matriz en el mismo lote ( M = k[1]-k[0]+1 ) y el tensor de salida es:

output[i, j, ..., l, m, n]
  = diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1]
    padding_value                                     ; otherwise
donde d = n - m , diag_index = [k] - d e index_in_diag = n - max(d, 0) + offset .

offset es cero excepto cuando la alineación de la diagonal es hacia la derecha.

offset = max_diag_len - diag_len(d) ; if (`align` in {RIGHT_LEFT, RIGHT_RIGHT}
                                           and `d >= 0`) or
                                         (`align` in {LEFT_RIGHT, RIGHT_RIGHT}
                                           and `d <= 0`)
         0                          ; otherwise
donde diag_len(d) = min(cols - max(d, 0), rows + min(d, 0)) .

Por ejemplo:

# The main diagonal.
diagonal = np.array([[1, 2, 3, 4],            # Input shape: (2, 4)
                     [5, 6, 7, 8]])
tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0],  # Output shape: (2, 4, 4)
                               [0, 2, 0, 0],
                               [0, 0, 3, 0],
                               [0, 0, 0, 4]],
                              [[5, 0, 0, 0],
                               [0, 6, 0, 0],
                               [0, 0, 7, 0],
                               [0, 0, 0, 8]]]

# A superdiagonal (per batch).
diagonal = np.array([[1, 2, 3],  # Input shape: (2, 3)
                     [4, 5, 6]])
tf.matrix_diag(diagonal, k = 1)
  ==> [[[0, 1, 0, 0],  # Output shape: (2, 4, 4)
        [0, 0, 2, 0],
        [0, 0, 0, 3],
        [0, 0, 0, 0]],
       [[0, 4, 0, 0],
        [0, 0, 5, 0],
        [0, 0, 0, 6],
        [0, 0, 0, 0]]]

# A tridiagonal band (per batch).
diagonals = np.array([[[0, 8, 9],  # Input shape: (2, 2, 3)
                       [1, 2, 3],
                       [4, 5, 0]],
                      [[0, 2, 3],
                       [6, 7, 9],
                       [9, 1, 0]]])
tf.matrix_diag(diagonals, k = (-1, 1))
  ==> [[[1, 8, 0],  # Output shape: (2, 3, 3)
        [4, 2, 9],
        [0, 5, 3]],
       [[6, 2, 0],
        [9, 7, 3],
        [0, 1, 9]]]

# LEFT_RIGHT alignment.
diagonals = np.array([[[8, 9, 0],  # Input shape: (2, 2, 3)
                       [1, 2, 3],
                       [0, 4, 5]],
                      [[2, 3, 0],
                       [6, 7, 9],
                       [0, 9, 1]]])
tf.matrix_diag(diagonals, k = (-1, 1), align="LEFT_RIGHT")
  ==> [[[1, 8, 0],  # Output shape: (2, 3, 3)
        [4, 2, 9],
        [0, 5, 3]],
       [[6, 2, 0],
        [9, 7, 3],
        [0, 1, 9]]]

# Rectangular matrix.
diagonal = np.array([1, 2])  # Input shape: (2)
tf.matrix_diag(diagonal, k = -1, num_rows = 3, num_cols = 4)
  ==> [[0, 0, 0, 0],  # Output shape: (3, 4)
       [1, 0, 0, 0],
       [0, 2, 0, 0]]

# Rectangular matrix with inferred num_cols and padding_value = 9.
tf.matrix_diag(diagonal, k = -1, num_rows = 3, padding_value = 9)
  ==> [[9, 9],  # Output shape: (3, 2)
       [1, 9],
       [9, 2]]

  

Arguments:

  • scope: A Scope object
  • diagonal: Rank r, where r >= 1
  • k: Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals. k can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band. k[0] must not be larger than k[1].
  • num_rows: The number of rows of the output matrix. If it is not provided, the op assumes the output matrix is a square matrix and infers the matrix size from k and the innermost dimension of diagonal.
  • num_cols: The number of columns of the output matrix. If it is not provided, the op assumes the output matrix is a square matrix and infers the matrix size from k and the innermost dimension of diagonal.
  • padding_value: The number to fill the area outside the specified diagonal band with. Default is 0.

Optional attributes (see Attrs):

  • align: Some diagonals are shorter than max_diag_len and need to be padded. align is a string specifying how superdiagonals and subdiagonals should be aligned, respectively. There are four possible alignments: "RIGHT_LEFT" (default), "LEFT_RIGHT", "LEFT_LEFT", and "RIGHT_RIGHT". "RIGHT_LEFT" aligns superdiagonals to the right (left-pads the row) and subdiagonals to the left (right-pads the row). It is the packing format LAPACK uses. cuSPARSE uses "LEFT_RIGHT", which is the opposite alignment.

Returns:

  • Output: Has rank r+1 when k is an integer or k[0] == k[1], rank r otherwise.

Constructors and Destructors

MatrixDiagV3(const ::tensorflow::Scope & scope, ::tensorflow::Input diagonal, ::tensorflow::Input k, ::tensorflow::Input num_rows, ::tensorflow::Input num_cols, ::tensorflow::Input padding_value)
MatrixDiagV3(const ::tensorflow::Scope & scope, ::tensorflow::Input diagonal, ::tensorflow::Input k, ::tensorflow::Input num_rows, ::tensorflow::Input num_cols, ::tensorflow::Input padding_value, const MatrixDiagV3::Attrs & attrs)

Public attributes

operation
output

Public functions

node() const
::tensorflow::Node *
operator::tensorflow::Input() const
operator::tensorflow::Output() const

Public static functions

Align(StringPiece x)

Structs

tensorflow::ops::MatrixDiagV3::Attrs

Optional attribute setters for MatrixDiagV3.

Public attributes

operation

Operation operation

producción

::tensorflow::Output output

Funciones publicas

MatrixDiagV3

 MatrixDiagV3(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input diagonal,
  ::tensorflow::Input k,
  ::tensorflow::Input num_rows,
  ::tensorflow::Input num_cols,
  ::tensorflow::Input padding_value
)

MatrixDiagV3

 MatrixDiagV3(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input diagonal,
  ::tensorflow::Input k,
  ::tensorflow::Input num_rows,
  ::tensorflow::Input num_cols,
  ::tensorflow::Input padding_value,
  const MatrixDiagV3::Attrs & attrs
)

nodo

::tensorflow::Node * node() const 

operador :: tensorflow :: Entrada

 operator::tensorflow::Input() const 

operador :: tensorflow :: Salida

 operator::tensorflow::Output() const 

Funciones estáticas públicas

Alinear

Attrs Align(
  StringPiece x
)