Cette page a été traduite par l'API Cloud Translation.
Switch to English

Conducteurs

Voir sur TensorFlow.org Exécuter dans Google Colab Afficher la source sur GitHub Télécharger le cahier

introduction

Un modèle courant dans l'apprentissage par renforcement consiste à exécuter une politique dans un environnement pour un nombre spécifié d'étapes ou d'épisodes. Cela se produit, par exemple, lors de la collecte de données, de l'évaluation et de la génération d'une vidéo de l'agent.

Bien que ce soit relativement simple d'écrire en python, il est beaucoup plus complexe à écrire et déboguer dans tensorflow car elle implique tf.while boucles, tf.cond et tf.control_dependencies . Par conséquent, nous résumons cette notion de boucle d'exécution dans une classe appelée driver , et fournissons des implémentations bien testées à la fois en Python et TensorFlow.

En outre, les données rencontrées par le pilote à chaque étape sont enregistrées dans un tuple nommé appelé Trajectoire et diffusées à un ensemble d'observateurs tels que des tampons de relecture et des métriques. Ces données comprennent l'observation de l'environnement, l'action préconisée par la politique, la récompense obtenue, le type du courant et l'étape suivante, etc.

Installer

Si vous n'avez pas encore installé tf-agents ou gym, exécutez:

pip install -q --pre tf-agents[reverb]
pip install -q gym
WARNING: You are using pip version 20.1.1; however, version 20.2 is available.
You should consider upgrading via the '/tmpfs/src/tf_docs_env/bin/python -m pip install --upgrade pip' command.
WARNING: You are using pip version 20.1.1; however, version 20.2 is available.
You should consider upgrading via the '/tmpfs/src/tf_docs_env/bin/python -m pip install --upgrade pip' command.

 from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf


from tf_agents.environments import suite_gym
from tf_agents.environments import tf_py_environment
from tf_agents.policies import random_py_policy
from tf_agents.policies import random_tf_policy
from tf_agents.metrics import py_metrics
from tf_agents.metrics import tf_metrics
from tf_agents.drivers import py_driver
from tf_agents.drivers import dynamic_episode_driver

tf.compat.v1.enable_v2_behavior()
 

Pilotes Python

La classe PyDriver prend un environnement python, une politique python et une liste d'observateurs à mettre à jour à chaque étape. La méthode principale est run() , qui run() l'environnement en utilisant des actions de la stratégie jusqu'à ce qu'au moins un des critères de terminaison suivants soit satisfait: Le nombre d'étapes atteint max_steps ou le nombre d'épisodes atteint max_episodes .

La mise en œuvre est à peu près la suivante:

 class PyDriver(object):

  def __init__(self, env, policy, observers, max_steps=1, max_episodes=1):
    self._env = env
    self._policy = policy
    self._observers = observers or []
    self._max_steps = max_steps or np.inf
    self._max_episodes = max_episodes or np.inf

  def run(self, time_step, policy_state=()):
    num_steps = 0
    num_episodes = 0
    while num_steps < self._max_steps and num_episodes < self._max_episodes:

      # Compute an action using the policy for the given time_step
      action_step = self._policy.action(time_step, policy_state)

      # Apply the action to the environment and get the next step
      next_time_step = self._env.step(action_step.action)

      # Package information into a trajectory
      traj = trajectory.Trajectory(
         time_step.step_type,
         time_step.observation,
         action_step.action,
         action_step.info,
         next_time_step.step_type,
         next_time_step.reward,
         next_time_step.discount)

      for observer in self._observers:
        observer(traj)

      # Update statistics to check termination
      num_episodes += np.sum(traj.is_last())
      num_steps += np.sum(~traj.is_boundary())

      time_step = next_time_step
      policy_state = action_step.state

    return time_step, policy_state

 

Maintenant, passons en revue l'exemple de l'exécution d'une politique aléatoire sur l'environnement CartPole, en enregistrant les résultats dans un tampon de relecture et en calculant certaines métriques.

 env = suite_gym.load('CartPole-v0')
policy = random_py_policy.RandomPyPolicy(time_step_spec=env.time_step_spec(), 
                                         action_spec=env.action_spec())
replay_buffer = []
metric = py_metrics.AverageReturnMetric()
observers = [replay_buffer.append, metric]
driver = py_driver.PyDriver(
    env, policy, observers, max_steps=20, max_episodes=1)

initial_time_step = env.reset()
final_time_step, _ = driver.run(initial_time_step)

print('Replay Buffer:')
for traj in replay_buffer:
  print(traj)

print('Average Return: ', metric.result())
 
Replay Buffer:
Trajectory(step_type=array(0, dtype=int32), observation=array([-0.02872566, -0.04710842, -0.00544945, -0.0319142 ], dtype=float32), action=array(1), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([-0.02966782,  0.14809126, -0.00608774, -0.3263115 ], dtype=float32), action=array(0), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([-0.026706  , -0.0469435 , -0.01261397, -0.03555458], dtype=float32), action=array(0), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([-0.02764487, -0.24188231, -0.01332506,  0.25312197], dtype=float32), action=array(1), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([-0.03248252, -0.04657265, -0.00826262, -0.04373396], dtype=float32), action=array(1), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([-0.03341397,  0.1486668 , -0.0091373 , -0.33901232], dtype=float32), action=array(1), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([-0.03044063,  0.34391758, -0.01591755, -0.6345626 ], dtype=float32), action=array(1), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([-0.02356228,  0.5392579 , -0.0286088 , -0.9322155 ], dtype=float32), action=array(1), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([-0.01277712,  0.73475397, -0.04725311, -1.2337494 ], dtype=float32), action=array(1), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([ 0.00191796,  0.9304505 , -0.0719281 , -1.5408539 ], dtype=float32), action=array(0), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([ 0.02052697,  0.73626345, -0.10274518, -1.271455  ], dtype=float32), action=array(0), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([ 0.03525224,  0.542592  , -0.12817428, -1.0126338 ], dtype=float32), action=array(1), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([ 0.04610407,  0.7391692 , -0.14842695, -1.342661  ], dtype=float32), action=array(0), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([ 0.06088746,  0.5461935 , -0.17528017, -1.0998576 ], dtype=float32), action=array(1), policy_info=(), next_step_type=array(1, dtype=int32), reward=array(1., dtype=float32), discount=array(1., dtype=float32))
Trajectory(step_type=array(1, dtype=int32), observation=array([ 0.07181133,  0.743134  , -0.19727732, -1.4420109 ], dtype=float32), action=array(0), policy_info=(), next_step_type=array(2, dtype=int32), reward=array(1., dtype=float32), discount=array(0., dtype=float32))
Average Return:  15.0

Pilotes TensorFlow

Nous avons également des pilotes dans TensorFlow qui sont fonctionnellement similaires aux pilotes Python, mais utilisent des environnements TF, des politiques TF, des observateurs TF, etc. Nous avons actuellement 2 pilotes TensorFlow: DynamicStepDriver , qui se termine après un nombre donné d'étapes d'environnement (valides) et DynamicEpisodeDriver , qui se termine après un nombre donné d'épisodes. Regardons un exemple du DynamicEpisode en action.

 env = suite_gym.load('CartPole-v0')
tf_env = tf_py_environment.TFPyEnvironment(env)

tf_policy = random_tf_policy.RandomTFPolicy(action_spec=tf_env.action_spec(),
                                            time_step_spec=tf_env.time_step_spec())


num_episodes = tf_metrics.NumberOfEpisodes()
env_steps = tf_metrics.EnvironmentSteps()
observers = [num_episodes, env_steps]
driver = dynamic_episode_driver.DynamicEpisodeDriver(
    tf_env, tf_policy, observers, num_episodes=2)

# Initial driver.run will reset the environment and initialize the policy.
final_time_step, policy_state = driver.run()

print('final_time_step', final_time_step)
print('Number of Steps: ', env_steps.result().numpy())
print('Number of Episodes: ', num_episodes.result().numpy())
 
final_time_step TimeStep(step_type=<tf.Tensor: shape=(1,), dtype=int32, numpy=array([0], dtype=int32)>, reward=<tf.Tensor: shape=(1,), dtype=float32, numpy=array([0.], dtype=float32)>, discount=<tf.Tensor: shape=(1,), dtype=float32, numpy=array([1.], dtype=float32)>, observation=<tf.Tensor: shape=(1, 4), dtype=float32, numpy=
array([[-0.02959541, -0.02209792,  0.01046155,  0.01981805]],
      dtype=float32)>)
Number of Steps:  34
Number of Episodes:  2

 # Continue running from previous state
final_time_step, _ = driver.run(final_time_step, policy_state)

print('final_time_step', final_time_step)
print('Number of Steps: ', env_steps.result().numpy())
print('Number of Episodes: ', num_episodes.result().numpy())
 
final_time_step TimeStep(step_type=<tf.Tensor: shape=(1,), dtype=int32, numpy=array([0], dtype=int32)>, reward=<tf.Tensor: shape=(1,), dtype=float32, numpy=array([0.], dtype=float32)>, discount=<tf.Tensor: shape=(1,), dtype=float32, numpy=array([1.], dtype=float32)>, observation=<tf.Tensor: shape=(1, 4), dtype=float32, numpy=
array([[-0.00525741,  0.00929421, -0.03492192,  0.0023589 ]],
      dtype=float32)>)
Number of Steps:  91
Number of Episodes:  4