Warning: This API is deprecated and will be removed in a future version of TensorFlow after the replacement is stable.

ReadVariableXlaSplitND

Stay organized with collections Save and categorize content based on your preferences.
public final class ReadVariableXlaSplitND

Splits resource variable input tensor across all dimensions.

An op which splits the resource variable input tensor based on the given num_splits attribute, pads slices optionally, and returned the slices. Slices are returned in row-major order.

This op may be generated via the TPU bridge.

For example, with `input` tensor:

[[0, 1, 2],
  [3, 4, 5],
  [6, 7, 8]]
 
`num_splits`:
[2, 2]
 
and `paddings`:
[1, 1]
 
the expected `outputs` is:
[[0, 1],
  [3, 4]]
 [[2, 0],
  [5, 0]]
 [[6, 7],
  [0, 0]]
 [[8, 0],
  [0, 0]]
 

Nested Classes

class ReadVariableXlaSplitND.Options Optional attributes for ReadVariableXlaSplitND  

Public Methods

static <T> ReadVariableXlaSplitND<T>
create(Scope scope, Operand<?> resource, Class<T> T, Long N, List<Long> numSplits, Options... options)
Factory method to create a class wrapping a new ReadVariableXlaSplitND operation.
Iterator<Operand<T>>
List<Output<T>>
static ReadVariableXlaSplitND.Options
paddings(List<Long> paddings)

Inherited Methods

Public Methods

public static ReadVariableXlaSplitND<T> create (Scope scope, Operand<?> resource, Class<T> T, Long N, List<Long> numSplits, Options... options)

Factory method to create a class wrapping a new ReadVariableXlaSplitND operation.

Parameters
scope current scope
resource Resource variable of input tensor to split across all dimensions. } out_arg { name: "outputs" description: <
numSplits Number of ways to split per dimension. Shape dimensions must be evenly divisible.
options carries optional attributes values
Returns
  • a new instance of ReadVariableXlaSplitND

public Iterator<Operand<T>> iterator ()

public List<Output<T>> outputs ()

public static ReadVariableXlaSplitND.Options paddings (List<Long> paddings)

Parameters
paddings Optional list of right paddings per dimension of input tensor to apply before splitting. This can be used to make a dimension evenly divisible.