Ottimizzazione di un modello ampio e profondo utilizzando Google Cloud

Visualizza su TensorFlow.org Esegui in Google Colab Visualizza su GitHub Scarica il taccuino Logo KaggleCorri a Kaggle

In questo esempio utilizzeremo CloudTuner e Google Cloud per mettere a punto un modello Wide e Deep basato sul modello sintonizzabile introdotto nell'apprendimento dei dati strutturati con reti Wide, Deep e Cross . In questo esempio utilizzeremo il set di dati del CAIIS Dogfood Day

Importa i moduli richiesti

import datetime
import uuid

import numpy as np
import pandas as pd
import tensorflow as tf
import os
import sys
import subprocess

from tensorflow.keras import datasets, layers, models
from sklearn.model_selection import train_test_split

# Install the latest version of tensorflow_cloud and other required packages.
if os.environ.get("TF_KERAS_RUNNING_REMOTELY", True):
    subprocess.run(
        ['python3', '-m', 'pip', 'install', 'tensorflow-cloud', '-q'])
    subprocess.run(
        ['python3', '-m', 'pip', 'install', 'google-cloud-storage', '-q'])
    subprocess.run(
        ['python3', '-m', 'pip', 'install', 'fsspec', '-q'])
    subprocess.run(
        ['python3', '-m', 'pip', 'install', 'gcsfs', '-q'])

import tensorflow_cloud as tfc
print(tfc.__version__)
0.1.15
tf.version.VERSION
'2.6.0'

Configurazioni di progetto

Impostazione dei parametri del progetto. Per ulteriori dettagli sui parametri specifici di Google Cloud, fare riferimento alle istruzioni di configurazione del progetto Google Cloud .

# Set Google Cloud Specific parameters

# TODO: Please set GCP_PROJECT_ID to your own Google Cloud project ID.
GCP_PROJECT_ID = 'YOUR_PROJECT_ID' 

# TODO: Change the Service Account Name to your own Service Account
SERVICE_ACCOUNT_NAME = 'YOUR_SERVICE_ACCOUNT_NAME'
SERVICE_ACCOUNT = f'{SERVICE_ACCOUNT_NAME}@{GCP_PROJECT_ID}.iam.gserviceaccount.com'

# TODO: set GCS_BUCKET to your own Google Cloud Storage (GCS) bucket.
GCS_BUCKET = 'YOUR_GCS_BUCKET_NAME'

# DO NOT CHANGE: Currently only the 'us-central1' region is supported.
REGION = 'us-central1'
# Set Tuning Specific parameters

# OPTIONAL: You can change the job name to any string.
JOB_NAME = 'wide_and_deep'

# OPTIONAL: Set Number of concurrent tuning jobs that you would like to run.
NUM_JOBS = 5

# TODO: Set the study ID for this run. Study_ID can be any unique string.
# Reusing the same Study_ID will cause the Tuner to continue tuning the
# Same Study parameters. This can be used to continue on a terminated job,
# or load stats from a previous study.
STUDY_NUMBER = '00001'
STUDY_ID = f'{GCP_PROJECT_ID}_{JOB_NAME}_{STUDY_NUMBER}'

# Setting location were training logs and checkpoints will be stored
GCS_BASE_PATH = f'gs://{GCS_BUCKET}/{JOB_NAME}/{STUDY_ID}'
TENSORBOARD_LOGS_DIR = os.path.join(GCS_BASE_PATH,"logs")

Autenticazione del notebook per utilizzare il tuo progetto Google Cloud

Per i notebook Kaggle, fai clic su "Componenti aggiuntivi" -> "Google Cloud SDK" prima di eseguire la cella sottostante.

# Using tfc.remote() to ensure this code only runs in notebook
if not tfc.remote():

    # Authentication for Kaggle Notebooks
    if "kaggle_secrets" in sys.modules:
        from kaggle_secrets import UserSecretsClient
        UserSecretsClient().set_gcloud_credentials(project=GCP_PROJECT_ID)

    # Authentication for Colab Notebooks
    if "google.colab" in sys.modules:
        from google.colab import auth
        auth.authenticate_user()
        os.environ["GOOGLE_CLOUD_PROJECT"] = GCP_PROJECT_ID

Carica i dati

Leggi i dati grezzi e dividili per addestrare e testare set di dati. Per questo passaggio dovrai copiare il set di dati nel bucket GCS in modo che sia possibile accedervi durante l'addestramento. Per questo esempio stiamo utilizzando il set di dati di https://www.kaggle.com/c/caiis-dogfood-day-2020

Per fare ciò puoi eseguire i seguenti comandi per scaricare e copiare il set di dati nel tuo bucket GCS oppure scaricare manualmente il set di dati vi Kaggle UI e caricare il file train.csv nel tuo bucket GCS vi GCS UI .

# Download the dataset
kaggle competitions download -c caiis-dogfood-day-2020

# Copy the training file to your bucket
gsutil cp ./caiis-dogfood-day-2020/train.csv $GCS_BASE_PATH/caiis-dogfood-day-2020/train.csv
train_URL = f'{GCS_BASE_PATH}/caiis-dogfood-day-2020/train.csv'
data = pd.read_csv(train_URL)
train, test = train_test_split(data, test_size=0.1)
# A utility method to create a tf.data dataset from a Pandas Dataframe
def df_to_dataset(df, shuffle=True, batch_size=32):
  df = df.copy()
  labels = df.pop('target')
  ds = tf.data.Dataset.from_tensor_slices((dict(df), labels))
  if shuffle:
    ds = ds.shuffle(buffer_size=len(df))
  ds = ds.batch(batch_size)
  return ds
sm_batch_size = 1000  # A small batch size is used for demonstration purposes
train_ds = df_to_dataset(train, batch_size=sm_batch_size)
test_ds = df_to_dataset(test, shuffle=False, batch_size=sm_batch_size)

Preelaborare i dati

Impostazione di livelli di preelaborazione per dati di input categorici e numerici. Per maggiori dettagli sui livelli di preelaborazione fare riferimento a lavorare con i livelli di preelaborazione .

from tensorflow.keras.layers.experimental import preprocessing

def create_model_inputs():
    inputs ={}
    for name, column in data.items():
        if name in ('id','target'):
            continue
        dtype = column.dtype
        if dtype == object:
            dtype = tf.string
        else:
            dtype = tf.float32

        inputs[name] = tf.keras.Input(shape=(1,), name=name, dtype=dtype)

    return inputs
#Preprocessing the numeric inputs, and running them through a normalization layer.
def preprocess_numeric_inputs(inputs):

    numeric_inputs = {name:input for name,input in inputs.items()
                      if input.dtype==tf.float32}

    x = layers.Concatenate()(list(numeric_inputs.values()))
    norm = preprocessing.Normalization()
    norm.adapt(np.array(data[numeric_inputs.keys()]))
    numeric_inputs = norm(x)
    return numeric_inputs
# Preprocessing the categorical inputs.
def preprocess_categorical_inputs(inputs):
    categorical_inputs = []
    for name, input in inputs.items():
        if input.dtype == tf.float32:
            continue

        lookup = preprocessing.StringLookup(vocabulary=np.unique(data[name]))
        one_hot = preprocessing.CategoryEncoding(max_tokens=lookup.vocab_size())

        x = lookup(input)
        x = one_hot(x)
        categorical_inputs.append(x)

    return layers.concatenate(categorical_inputs)

Definire l'architettura del modello e gli iperparametri

In questa sezione definiamo i nostri parametri di ottimizzazione utilizzando i parametri Hyper di Keras Tuner e una funzione di creazione del modello. La funzione di creazione del modello accetta un argomento hp da cui è possibile campionare gli iperparametri, come hp.Int('units', min_value=32, max_value=512, step=32) (un numero intero da un determinato intervallo).

import kerastuner

# Configure the search space
HPS = kerastuner.engine.hyperparameters.HyperParameters()
HPS.Float('learning_rate', min_value=1e-4, max_value=1e-2, sampling='log')

HPS.Int('num_layers', min_value=2, max_value=5)
for i in range(5):
    HPS.Float('dropout_rate_' + str(i), min_value=0.0, max_value=0.3, step=0.1)
    HPS.Choice('num_units_' + str(i), [32, 64, 128, 256])
from tensorflow.keras import layers
from tensorflow.keras.optimizers import Adam


def create_wide_and_deep_model(hp):

    inputs = create_model_inputs()
    wide = preprocess_categorical_inputs(inputs)
    wide = layers.BatchNormalization()(wide)

    deep = preprocess_numeric_inputs(inputs)
    for i in range(hp.get('num_layers')):
        deep = layers.Dense(hp.get('num_units_' + str(i)))(deep)
        deep = layers.BatchNormalization()(deep)
        deep = layers.ReLU()(deep)
        deep = layers.Dropout(hp.get('dropout_rate_' + str(i)))(deep)

    both = layers.concatenate([wide, deep])
    outputs = layers.Dense(1, activation='sigmoid')(both)
    model = tf.keras.Model(inputs=inputs, outputs=outputs)
    metrics = [
        tf.keras.metrics.Precision(name='precision'),
        tf.keras.metrics.Recall(name='recall'),
        'accuracy',
        'mse'
    ]

    model.compile(
        optimizer=Adam(lr=hp.get('learning_rate')),
        loss='binary_crossentropy',
        metrics=metrics)
    return model

Configura un CloudTuner

In questa sezione configuriamo il cloud tuner sia per l'esecuzione remota che locale. La differenza principale tra i due è la strategia di distribuzione.

from tensorflow_cloud import CloudTuner

distribution_strategy = None
if not tfc.remote():
    # Using MirroredStrategy to use a single instance with multiple GPUs
    # during remote execution while using no strategy for local.
    distribution_strategy = tf.distribute.MirroredStrategy()

tuner = CloudTuner(
    create_wide_and_deep_model,
    project_id=GCP_PROJECT_ID,
    project_name=JOB_NAME,
    region=REGION,
    objective='accuracy',
    hyperparameters=HPS,
    max_trials=100,
    directory=GCS_BASE_PATH,
    study_id=STUDY_ID,
    overwrite=True,
    distribution_strategy=distribution_strategy)
# Configure Tensorboard logs
callbacks=[
    tf.keras.callbacks.TensorBoard(log_dir=TENSORBOARD_LOGS_DIR)]

# Setting to run tuning remotely, you can run tuner locally to validate it works first.
if tfc.remote():
    tuner.search(train_ds, epochs=20, validation_data=test_ds, callbacks=callbacks)

# You can uncomment the code below to run the tuner.search() locally to validate
# everything works before submitting the job to Cloud. Stop the job manually
# after one epoch.

# else:
#     tuner.search(train_ds, epochs=1, validation_data=test_ds, callbacks=callbacks)

Inizia la formazione a distanza

Questo passaggio preparerà il codice da questo notebook per l'esecuzione remota e avvierà NUM_JOBS esecuzioni parallele in remoto per addestrare il modello. Una volta inviati i lavori, puoi andare al passaggio successivo per monitorare l'avanzamento dei lavori tramite Tensorboard.

tfc.run_cloudtuner(
    distribution_strategy='auto',
    docker_config=tfc.DockerConfig(
        image_build_bucket=GCS_BUCKET
        ),
    chief_config=tfc.MachineConfig(
        cpu_cores=16,
        memory=60,
    ),
    job_labels={'job': JOB_NAME},
    service_account=SERVICE_ACCOUNT,
    num_jobs=NUM_JOBS
)

Risultati della formazione

Riconnetti la tua istanza Colab

La maggior parte dei lavori di formazione remota durano a lungo, se utilizzi Colab potrebbe scadere prima che i risultati della formazione siano disponibili. In tal caso, esegui nuovamente le seguenti sezioni per riconnetterti e configurare la tua istanza Colab per accedere ai risultati della formazione. Esegui le seguenti sezioni in ordine:

  1. Importa i moduli richiesti
  2. Configurazioni di progetto
  3. Autenticazione del notebook per utilizzare il tuo progetto Google Cloud

Carica Tensorboard

Mentre la formazione è in corso puoi utilizzare Tensorboard per visualizzare i risultati. Tieni presente che i risultati verranno visualizzati solo dopo l'inizio dell'allenamento. Questo potrebbe richiedere alcuni minuti.

%load_ext tensorboard
%tensorboard --logdir $TENSORBOARD_LOGS_DIR

È possibile accedere alle risorse di formazione come segue. Tieni presente che i risultati verranno visualizzati solo dopo che il processo di ottimizzazione sarà stato completato almeno una volta di prova. Questo potrebbe richiedere alcuni minuti.

if not tfc.remote():
    tuner.results_summary(1)
    best_model = tuner.get_best_models(1)[0]
    best_hyperparameters = tuner.get_best_hyperparameters(1)[0]

    # References to best trial assets
    best_trial_id = tuner.oracle.get_best_trials(1)[0].trial_id
    best_trial_dir = tuner.get_trial_dir(best_trial_id)