Compondo Modelos de Floresta de Decisão e Rede Neural

Ver no TensorFlow.org Executar no Google Colab Ver no GitHub Baixar caderno API Keras Functional

Introdução

Bem-vindo à composição tutorial modelo para Florestas decisão TensorFlow (TF-DF). Este notebook mostra como compor várias florestas de decisão e modelos de redes neurais em conjunto, utilizando uma camada de pré-processamento comum ea API funcional Keras .

Você pode querer compor modelos juntos para melhorar o desempenho preditivo (agrupamento), para obter o melhor de diferentes tecnologias de modelagem (agrupamento de modelo heterogêneo), para treinar diferentes partes do modelo em conjuntos de dados diferentes (por exemplo, pré-treinamento) ou para criar um modelo empilhado (por exemplo, um modelo opera nas previsões de outro modelo).

Este tutorial cobre um caso de uso avançado de composição de modelo usando a API Funcional. Você pode encontrar exemplos para cenários mais simples de composição modelo na seção deste "recurso de pré-processamento" tutorial e no "usando um texto pré-treinado embutindo" deste tutorial .

Aqui está a estrutura do modelo que você construirá:

SVG

Seu modelo composto tem três estágios:

  1. O primeiro estágio é uma camada de pré-processamento composta por uma rede neural e comum a todos os modelos do próximo estágio. Na prática, essa camada de pré-processamento pode ser uma incorporação pré-treinada para ajuste fino ou uma rede neural inicializada aleatoriamente.
  2. O segundo estágio é um conjunto de dois modelos de floresta de decisão e dois modelos de rede neural.
  3. O último estágio calcula a média das previsões dos modelos do segundo estágio. Não contém pesos aprendíveis.

As redes neurais são treinados usando o algoritmo de backpropagation e gradiente descendente. Este algoritmo possui duas propriedades importantes: (1) A camada de rede neural pode ser treinada se receber um gradiente de perda (mais precisamente, o gradiente de perda de acordo com a saída da camada), e (2) o algoritmo "transmite" a gradiente de perda da saída da camada para a entrada da camada (esta é a "regra da cadeia"). Por esses dois motivos, o Backpropagation pode treinar várias camadas de redes neurais empilhadas umas sobre as outras.

Neste exemplo, as florestas de decisão são treinados com o aleatório Floresta algoritmo (RF). Ao contrário da retropropagação, o treinamento de RF não "transmite" o gradiente de perda de sua saída para sua entrada. Por essas razões, o algoritmo de RF clássico não pode ser usado para treinar ou ajustar uma rede neural por baixo. Em outras palavras, os estágios de "floresta de decisão" não podem ser usados ​​para treinar o "bloco de pré-processamento NN aprendível".

  1. Treine o estágio de pré-processamento e redes neurais.
  2. Treine as etapas da floresta de decisão.

Instale o TensorFlow Decision Forests

Instale o TF-DF executando a célula a seguir.

pip install tensorflow_decision_forests -U --quiet

Instale Wurlitzer para mostrar os registros de treinamento detalhados. Isso só é necessário em notebooks.

pip install wurlitzer -U --quiet

Bibliotecas de importação

import tensorflow_decision_forests as tfdf

import os
import numpy as np
import pandas as pd
import tensorflow as tf
import math
import matplotlib.pyplot as plt

try:
  from wurlitzer import sys_pipes
except:
  from colabtools.googlelog import CaptureLog as sys_pipes

from IPython.core.magic import register_line_magic
from IPython.display import Javascript
WARNING:root:Failure to load the custom c++ tensorflow ops. This error is likely caused the version of TensorFlow and TensorFlow Decision Forests are not compatible.
WARNING:root:TF Parameter Server distributed training not available.

Conjunto de dados

Você usará um conjunto de dados sintético simples neste tutorial para facilitar a interpretação do modelo final.

def make_dataset(num_examples, num_features, seed=1234):
  np.random.seed(seed)
  features = np.random.uniform(-1, 1, size=(num_examples, num_features))
  noise = np.random.uniform(size=(num_examples))

  left_side = np.sqrt(
      np.sum(np.multiply(np.square(features[:, 0:2]), [1, 2]), axis=1))
  right_side = features[:, 2] * 0.7 + np.sin(
      features[:, 3] * 10) * 0.5 + noise * 0.0 + 0.5

  labels = left_side <= right_side
  return features, labels.astype(int)

Gere alguns exemplos:

make_dataset(num_examples=5, num_features=4)
(array([[-0.6169611 ,  0.24421754, -0.12454452,  0.57071717],
        [ 0.55995162, -0.45481479, -0.44707149,  0.60374436],
        [ 0.91627871,  0.75186527, -0.28436546,  0.00199025],
        [ 0.36692587,  0.42540405, -0.25949849,  0.12239237],
        [ 0.00616633, -0.9724631 ,  0.54565324,  0.76528238]]),
 array([0, 0, 0, 1, 0]))

Você também pode representá-los para ter uma ideia do padrão sintético:

plot_features, plot_label = make_dataset(num_examples=50000, num_features=4)

plt.rcParams["figure.figsize"] = [8, 8]
common_args = dict(c=plot_label, s=1.0, alpha=0.5)

plt.subplot(2, 2, 1)
plt.scatter(plot_features[:, 0], plot_features[:, 1], **common_args)

plt.subplot(2, 2, 2)
plt.scatter(plot_features[:, 1], plot_features[:, 2], **common_args)

plt.subplot(2, 2, 3)
plt.scatter(plot_features[:, 0], plot_features[:, 2], **common_args)

plt.subplot(2, 2, 4)
plt.scatter(plot_features[:, 0], plot_features[:, 3], **common_args)
<matplotlib.collections.PathCollection at 0x7f6b78d20e90>

png

Observe que esse padrão é suave e não alinhado ao eixo. Isso irá beneficiar os modelos de rede neural. Isso ocorre porque é mais fácil para uma rede neural do que para uma árvore de decisão ter limites de decisão redondos e não alinhados.

Por outro lado, treinaremos o modelo em um pequeno conjunto de dados com 2.500 exemplos. Isso vai beneficiar os modelos de floresta de decisão. Isso ocorre porque as florestas de decisão são muito mais eficientes, usando todas as informações disponíveis nos exemplos (as florestas de decisão são "eficientes em termos de amostragem").

Nosso conjunto de redes neurais e florestas de decisão usará o melhor dos dois mundos.

Vamos criar um trem e teste tf.data.Dataset :

def make_tf_dataset(batch_size=64, **args):
  features, labels = make_dataset(**args)
  return tf.data.Dataset.from_tensor_slices(
      (features, labels)).batch(batch_size)


num_features = 10

train_dataset = make_tf_dataset(
    num_examples=2500, num_features=num_features, batch_size=64, seed=1234)
test_dataset = make_tf_dataset(
    num_examples=10000, num_features=num_features, batch_size=64, seed=5678)

Estrutura do modelo

Defina a estrutura do modelo da seguinte forma:

# Input features.
raw_features = tf.keras.layers.Input(shape=(num_features,))

# Stage 1
# =======

# Common learnable pre-processing
preprocessor = tf.keras.layers.Dense(10, activation=tf.nn.relu6)
preprocess_features = preprocessor(raw_features)

# Stage 2
# =======

# Model #1: NN
m1_z1 = tf.keras.layers.Dense(5, activation=tf.nn.relu6)(preprocess_features)
m1_pred = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)(m1_z1)

# Model #2: NN
m2_z1 = tf.keras.layers.Dense(5, activation=tf.nn.relu6)(preprocess_features)
m2_pred = tf.keras.layers.Dense(1, activation=tf.nn.sigmoid)(m2_z1)


def seed_advanced_argument(seed):
  """Create a seed argument for a TF-DF model.

  TODO(gbm): Surface the "seed" argument to the model constructor directly.
  """
  return tfdf.keras.AdvancedArguments(
      yggdrasil_training_config=tfdf.keras.core.YggdrasilTrainingConfig(
          random_seed=seed))


# Model #3: DF
model_3 = tfdf.keras.RandomForestModel(
    num_trees=1000, advanced_arguments=seed_advanced_argument(1234))
m3_pred = model_3(preprocess_features)

# Model #4: DF
model_4 = tfdf.keras.RandomForestModel(
    num_trees=1000,
    #split_axis="SPARSE_OBLIQUE", # Uncomment this line to increase the quality of this model
    advanced_arguments=seed_advanced_argument(4567))
m4_pred = model_4(preprocess_features)

# Since TF-DF uses deterministic learning algorithms, you should set the model's
# training seed to different values otherwise both
# `tfdf.keras.RandomForestModel` will be exactly the same.

# Stage 3
# =======

mean_nn_only = tf.reduce_mean(tf.stack([m1_pred, m2_pred], axis=0), axis=0)
mean_nn_and_df = tf.reduce_mean(
    tf.stack([m1_pred, m2_pred, m3_pred, m4_pred], axis=0), axis=0)

# Keras Models
# ============

ensemble_nn_only = tf.keras.models.Model(raw_features, mean_nn_only)
ensemble_nn_and_df = tf.keras.models.Model(raw_features, mean_nn_and_df)
WARNING:tensorflow:AutoGraph could not transform <bound method Socket.send of <zmq.Socket(zmq.PUSH) at 0x7f6ba21b62f0>> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: module, class, method, function, traceback, frame, or code object was expected, got cython_function_or_method
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING:absl:The model was called directly (i.e. using `model(data)` instead of using `model.predict(data)`) before being trained. The model will only return zeros until trained. The output shape might change after training Tensor("inputs:0", shape=(None, 10), dtype=float32)
WARNING:tensorflow:AutoGraph could not transform <bound method Socket.send of <zmq.Socket(zmq.PUSH) at 0x7f6ba21b62f0>> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: module, class, method, function, traceback, frame, or code object was expected, got cython_function_or_method
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING: AutoGraph could not transform <bound method Socket.send of <zmq.Socket(zmq.PUSH) at 0x7f6ba21b62f0>> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: module, class, method, function, traceback, frame, or code object was expected, got cython_function_or_method
To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING:absl:The model was called directly (i.e. using `model(data)` instead of using `model.predict(data)`) before being trained. The model will only return zeros until trained. The output shape might change after training Tensor("inputs:0", shape=(None, 10), dtype=float32)

Antes de treinar o modelo, você pode plotá-lo para verificar se ele é semelhante ao diagrama inicial.

from keras.utils.vis_utils import plot_model

plot_model(ensemble_nn_and_df, to_file="/tmp/model.png", show_shapes=True)

png

Treinamento de modelo

Primeiro treine o pré-processamento e as duas camadas da rede neural usando o algoritmo de retropropagação.

%%time
ensemble_nn_only.compile(
        optimizer=tf.keras.optimizers.Adam(),
        loss=tf.keras.losses.BinaryCrossentropy(),
        metrics=["accuracy"])

ensemble_nn_only.fit(train_dataset, epochs=20, validation_data=test_dataset)
Epoch 1/20
40/40 [==============================] - 1s 13ms/step - loss: 0.6115 - accuracy: 0.7308 - val_loss: 0.5857 - val_accuracy: 0.7407
Epoch 2/20
40/40 [==============================] - 0s 9ms/step - loss: 0.5645 - accuracy: 0.7484 - val_loss: 0.5487 - val_accuracy: 0.7391
Epoch 3/20
40/40 [==============================] - 0s 9ms/step - loss: 0.5310 - accuracy: 0.7496 - val_loss: 0.5237 - val_accuracy: 0.7392
Epoch 4/20
40/40 [==============================] - 0s 9ms/step - loss: 0.5074 - accuracy: 0.7500 - val_loss: 0.5055 - val_accuracy: 0.7391
Epoch 5/20
40/40 [==============================] - 0s 9ms/step - loss: 0.4887 - accuracy: 0.7496 - val_loss: 0.4901 - val_accuracy: 0.7397
Epoch 6/20
40/40 [==============================] - 0s 9ms/step - loss: 0.4725 - accuracy: 0.7520 - val_loss: 0.4763 - val_accuracy: 0.7440
Epoch 7/20
40/40 [==============================] - 0s 9ms/step - loss: 0.4585 - accuracy: 0.7584 - val_loss: 0.4644 - val_accuracy: 0.7542
Epoch 8/20
40/40 [==============================] - 0s 9ms/step - loss: 0.4470 - accuracy: 0.7700 - val_loss: 0.4544 - val_accuracy: 0.7682
Epoch 9/20
40/40 [==============================] - 0s 9ms/step - loss: 0.4374 - accuracy: 0.7804 - val_loss: 0.4462 - val_accuracy: 0.7789
Epoch 10/20
40/40 [==============================] - 0s 9ms/step - loss: 0.4297 - accuracy: 0.7848 - val_loss: 0.4395 - val_accuracy: 0.7865
Epoch 11/20
40/40 [==============================] - 0s 9ms/step - loss: 0.4232 - accuracy: 0.7904 - val_loss: 0.4339 - val_accuracy: 0.7933
Epoch 12/20
40/40 [==============================] - 0s 10ms/step - loss: 0.4176 - accuracy: 0.7952 - val_loss: 0.4289 - val_accuracy: 0.7963
Epoch 13/20
40/40 [==============================] - 0s 9ms/step - loss: 0.4126 - accuracy: 0.7992 - val_loss: 0.4243 - val_accuracy: 0.8010
Epoch 14/20
40/40 [==============================] - 0s 9ms/step - loss: 0.4078 - accuracy: 0.8052 - val_loss: 0.4199 - val_accuracy: 0.8033
Epoch 15/20
40/40 [==============================] - 0s 9ms/step - loss: 0.4029 - accuracy: 0.8096 - val_loss: 0.4155 - val_accuracy: 0.8067
Epoch 16/20
40/40 [==============================] - 0s 9ms/step - loss: 0.3981 - accuracy: 0.8132 - val_loss: 0.4109 - val_accuracy: 0.8099
Epoch 17/20
40/40 [==============================] - 0s 9ms/step - loss: 0.3932 - accuracy: 0.8152 - val_loss: 0.4061 - val_accuracy: 0.8129
Epoch 18/20
40/40 [==============================] - 0s 9ms/step - loss: 0.3883 - accuracy: 0.8208 - val_loss: 0.4012 - val_accuracy: 0.8149
Epoch 19/20
40/40 [==============================] - 0s 9ms/step - loss: 0.3832 - accuracy: 0.8232 - val_loss: 0.3963 - val_accuracy: 0.8168
Epoch 20/20
40/40 [==============================] - 0s 10ms/step - loss: 0.3783 - accuracy: 0.8276 - val_loss: 0.3912 - val_accuracy: 0.8203
CPU times: user 12.1 s, sys: 2.14 s, total: 14.2 s
Wall time: 8.54 s
<keras.callbacks.History at 0x7f6b181d7450>

Vamos avaliar o pré-processamento e a parte com as duas redes neurais apenas:

evaluation_nn_only = ensemble_nn_only.evaluate(test_dataset, return_dict=True)
print("Accuracy (NN #1 and #2 only): ", evaluation_nn_only["accuracy"])
print("Loss (NN #1 and #2 only): ", evaluation_nn_only["loss"])
157/157 [==============================] - 0s 2ms/step - loss: 0.3912 - accuracy: 0.8203
Accuracy (NN #1 and #2 only):  0.8202999830245972
Loss (NN #1 and #2 only):  0.39124569296836853

Vamos treinar os dois componentes da floresta de decisão (um após o outro).

%%time
train_dataset_with_preprocessing = train_dataset.map(lambda x,y: (preprocessor(x), y))
test_dataset_with_preprocessing = test_dataset.map(lambda x,y: (preprocessor(x), y))

model_3.fit(train_dataset_with_preprocessing)
model_4.fit(train_dataset_with_preprocessing)
WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7f6b86bc3dd0> and will run it as-is.
Cause: could not parse the source code of <function <lambda> at 0x7f6b86bc3dd0>: no matching AST found among candidates:

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7f6b86bc3dd0> and will run it as-is.
Cause: could not parse the source code of <function <lambda> at 0x7f6b86bc3dd0>: no matching AST found among candidates:

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING: AutoGraph could not transform <function <lambda> at 0x7f6b86bc3dd0> and will run it as-is.
Cause: could not parse the source code of <function <lambda> at 0x7f6b86bc3dd0>: no matching AST found among candidates:

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7f6b783a9320> and will run it as-is.
Cause: could not parse the source code of <function <lambda> at 0x7f6b783a9320>: no matching AST found among candidates:

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING:tensorflow:AutoGraph could not transform <function <lambda> at 0x7f6b783a9320> and will run it as-is.
Cause: could not parse the source code of <function <lambda> at 0x7f6b783a9320>: no matching AST found among candidates:

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
WARNING: AutoGraph could not transform <function <lambda> at 0x7f6b783a9320> and will run it as-is.
Cause: could not parse the source code of <function <lambda> at 0x7f6b783a9320>: no matching AST found among candidates:

To silence this warning, decorate the function with @tf.autograph.experimental.do_not_convert
23/40 [================>.............] - ETA: 0s
[INFO kernel.cc:736] Start Yggdrasil model training
[INFO kernel.cc:737] Collect training examples
[INFO kernel.cc:392] Number of batches: 40
[INFO kernel.cc:393] Number of examples: 2500
[INFO kernel.cc:759] Dataset:
Number of records: 2500
Number of columns: 11

Number of columns by type:
    NUMERICAL: 10 (90.9091%)
    CATEGORICAL: 1 (9.09091%)

Columns:

NUMERICAL: 10 (90.9091%)
    0: "data:0.0" NUMERICAL mean:0.356465 min:0 max:2.37352 sd:0.451418
    1: "data:0.1" NUMERICAL mean:0.392088 min:0 max:2.3411 sd:0.470499
    2: "data:0.2" NUMERICAL mean:0.382386 min:0 max:2.11809 sd:0.483672
    3: "data:0.3" NUMERICAL mean:0.290395 min:0 max:2.27481 sd:0.400102
    4: "data:0.4" NUMERICAL mean:0.210684 min:0 max:1.35897 sd:0.281379
    5: "data:0.5" NUMERICAL mean:0.4008 min:0 max:2.06561 sd:0.453018
    6: "data:0.6" NUMERICAL mean:0.289166 min:0 max:2.0263 sd:0.407337
    7: "data:0.7" NUMERICAL mean:0.277971 min:0 max:1.77561 sd:0.363215
    8: "data:0.8" NUMERICAL mean:0.41254 min:0 max:2.79804 sd:0.553333
    9: "data:0.9" NUMERICAL mean:0.197082 min:0 max:1.60773 sd:0.298194

CATEGORICAL: 1 (9.09091%)
    10: "__LABEL" CATEGORICAL integerized vocab-size:3 no-ood-item

Terminology:
    nas: Number of non-available (i.e. missing) values.
    ood: Out of dictionary.
    manually-defined: Attribute which type is manually defined by the user i.e. the type was not automatically inferred.
    tokenized: The attribute value is obtained through tokenization.
    has-dict: The attribute is attached to a string dictionary e.g. a categorical attribute stored as a string.
    vocab-size: Number of unique values.

[INFO kernel.cc:762] Configure learner
[INFO kernel.cc:787] Training config:
learner: "RANDOM_FOREST"
features: "data:0\\.0"
features: "data:0\\.1"
features: "data:0\\.2"
features: "data:0\\.3"
features: "data:0\\.4"
features: "data:0\\.5"
features: "data:0\\.6"
features: "data:0\\.7"
features: "data:0\\.8"
features: "data:0\\.9"
label: "__LABEL"
task: CLASSIFICATION
random_seed: 1234
[yggdrasil_decision_forests.model.random_forest.proto.random_forest_config] {
  num_trees: 1000
  decision_tree {
    max_depth: 16
    min_examples: 5
    in_split_min_examples_check: true
    missing_value_policy: GLOBAL_IMPUTATION
    allow_na_conditions: false
    categorical_set_greedy_forward {
      sampling: 0.1
      max_num_items: -1
      min_item_frequency: 1
    }
    growing_strategy_local {
    }
    categorical {
      cart {
      }
    }
    num_candidate_attributes_ratio: -1
    axis_aligned_split {
    }
    internal {
      sorting_strategy: PRESORTED
    }
  }
  winner_take_all_inference: true
  compute_oob_performances: true
  compute_oob_variable_importances: false
  adapt_bootstrap_size_ratio_for_maximum_training_duration: false
}

[INFO kernel.cc:790] Deployment config:
num_threads: 6

[INFO kernel.cc:817] Train model
[INFO random_forest.cc:315] Training random forest on 2500 example(s) and 10 feature(s).
[INFO random_forest.cc:628] Training of tree  1/1000 (tree index:1) done accuracy:0.781996 logloss:7.85767
[INFO random_forest.cc:628] Training of tree  11/1000 (tree index:8) done accuracy:0.79895 logloss:2.7263
[INFO random_forest.cc:628] Training of tree  21/1000 (tree index:20) done accuracy:0.8012 logloss:1.26831
[INFO random_forest.cc:628] Training of tree  31/1000 (tree index:30) done accuracy:0.8076 logloss:0.898323
[INFO random_forest.cc:628] Training of tree  41/1000 (tree index:37) done accuracy:0.8084 logloss:0.736323
[INFO random_forest.cc:628] Training of tree  51/1000 (tree index:51) done accuracy:0.8072 logloss:0.612984
[INFO random_forest.cc:628] Training of tree  61/1000 (tree index:63) done accuracy:0.8104 logloss:0.55782
[INFO random_forest.cc:628] Training of tree  71/1000 (tree index:69) done accuracy:0.81 logloss:0.544938
[INFO random_forest.cc:628] Training of tree  81/1000 (tree index:80) done accuracy:0.814 logloss:0.532167
[INFO random_forest.cc:628] Training of tree  91/1000 (tree index:89) done accuracy:0.8144 logloss:0.530892
[INFO random_forest.cc:628] Training of tree  101/1000 (tree index:100) done accuracy:0.814 logloss:0.516588
[INFO random_forest.cc:628] Training of tree  111/1000 (tree index:108) done accuracy:0.8128 logloss:0.490739
[INFO random_forest.cc:628] Training of tree  121/1000 (tree index:118) done accuracy:0.8124 logloss:0.490544
[INFO random_forest.cc:628] Training of tree  131/1000 (tree index:134) done accuracy:0.8112 logloss:0.451653
[INFO random_forest.cc:628] Training of tree  141/1000 (tree index:140) done accuracy:0.8136 logloss:0.437757
[INFO random_forest.cc:628] Training of tree  151/1000 (tree index:150) done accuracy:0.8144 logloss:0.424328
[INFO random_forest.cc:628] Training of tree  161/1000 (tree index:159) done accuracy:0.8132 logloss:0.42426
[INFO random_forest.cc:628] Training of tree  171/1000 (tree index:168) done accuracy:0.814 logloss:0.411061
[INFO random_forest.cc:628] Training of tree  181/1000 (tree index:184) done accuracy:0.8136 logloss:0.411324
[INFO random_forest.cc:628] Training of tree  191/1000 (tree index:190) done accuracy:0.8148 logloss:0.410002
[INFO random_forest.cc:628] Training of tree  201/1000 (tree index:200) done accuracy:0.8144 logloss:0.409526
[INFO random_forest.cc:628] Training of tree  211/1000 (tree index:208) done accuracy:0.814 logloss:0.40944
[INFO random_forest.cc:628] Training of tree  221/1000 (tree index:218) done accuracy:0.8152 logloss:0.409039
[INFO random_forest.cc:628] Training of tree  231/1000 (tree index:234) done accuracy:0.8144 logloss:0.409254
[INFO random_forest.cc:628] Training of tree  241/1000 (tree index:242) done accuracy:0.8144 logloss:0.40879
[INFO random_forest.cc:628] Training of tree  251/1000 (tree index:251) done accuracy:0.8152 logloss:0.395703
[INFO random_forest.cc:628] Training of tree  261/1000 (tree index:259) done accuracy:0.8168 logloss:0.395747
[INFO random_forest.cc:628] Training of tree  271/1000 (tree index:268) done accuracy:0.814 logloss:0.394959
[INFO random_forest.cc:628] Training of tree  281/1000 (tree index:283) done accuracy:0.8148 logloss:0.395202
[INFO random_forest.cc:628] Training of tree  291/1000 (tree index:292) done accuracy:0.8136 logloss:0.395536
[INFO random_forest.cc:628] Training of tree  301/1000 (tree index:300) done accuracy:0.8128 logloss:0.39472
[INFO random_forest.cc:628] Training of tree  311/1000 (tree index:308) done accuracy:0.8124 logloss:0.394763
[INFO random_forest.cc:628] Training of tree  321/1000 (tree index:318) done accuracy:0.8132 logloss:0.394732
[INFO random_forest.cc:628] Training of tree  331/1000 (tree index:334) done accuracy:0.8136 logloss:0.394822
[INFO random_forest.cc:628] Training of tree  341/1000 (tree index:343) done accuracy:0.812 logloss:0.395051
[INFO random_forest.cc:628] Training of tree  351/1000 (tree index:350) done accuracy:0.8132 logloss:0.39492
[INFO random_forest.cc:628] Training of tree  361/1000 (tree index:358) done accuracy:0.8132 logloss:0.395054
[INFO random_forest.cc:628] Training of tree  371/1000 (tree index:368) done accuracy:0.812 logloss:0.395588
[INFO random_forest.cc:628] Training of tree  381/1000 (tree index:384) done accuracy:0.8104 logloss:0.395576
[INFO random_forest.cc:628] Training of tree  391/1000 (tree index:390) done accuracy:0.8132 logloss:0.395713
[INFO random_forest.cc:628] Training of tree  401/1000 (tree index:400) done accuracy:0.8088 logloss:0.383693
[INFO random_forest.cc:628] Training of tree  411/1000 (tree index:408) done accuracy:0.8088 logloss:0.383575
[INFO random_forest.cc:628] Training of tree  421/1000 (tree index:417) done accuracy:0.8096 logloss:0.383934
[INFO random_forest.cc:628] Training of tree  431/1000 (tree index:434) done accuracy:0.81 logloss:0.384001
[INFO random_forest.cc:628] Training of tree  441/1000 (tree index:442) done accuracy:0.808 logloss:0.384118
[INFO random_forest.cc:628] Training of tree  451/1000 (tree index:450) done accuracy:0.8096 logloss:0.384076
[INFO random_forest.cc:628] Training of tree  461/1000 (tree index:458) done accuracy:0.8104 logloss:0.383208
[INFO random_forest.cc:628] Training of tree  471/1000 (tree index:468) done accuracy:0.812 logloss:0.383298
[INFO random_forest.cc:628] Training of tree  481/1000 (tree index:482) done accuracy:0.81 logloss:0.38358
[INFO random_forest.cc:628] Training of tree  491/1000 (tree index:492) done accuracy:0.812 logloss:0.383453
[INFO random_forest.cc:628] Training of tree  501/1000 (tree index:500) done accuracy:0.8128 logloss:0.38317
[INFO random_forest.cc:628] Training of tree  511/1000 (tree index:508) done accuracy:0.812 logloss:0.383369
[INFO random_forest.cc:628] Training of tree  521/1000 (tree index:518) done accuracy:0.8132 logloss:0.383461
[INFO random_forest.cc:628] Training of tree  531/1000 (tree index:532) done accuracy:0.8124 logloss:0.38342
[INFO random_forest.cc:628] Training of tree  541/1000 (tree index:542) done accuracy:0.8128 logloss:0.383376
[INFO random_forest.cc:628] Training of tree  551/1000 (tree index:550) done accuracy:0.8128 logloss:0.383663
[INFO random_forest.cc:628] Training of tree  561/1000 (tree index:558) done accuracy:0.812 logloss:0.383574
[INFO random_forest.cc:628] Training of tree  571/1000 (tree index:568) done accuracy:0.8116 logloss:0.383529
[INFO random_forest.cc:628] Training of tree  581/1000 (tree index:580) done accuracy:0.8128 logloss:0.383624
[INFO random_forest.cc:628] Training of tree  591/1000 (tree index:592) done accuracy:0.814 logloss:0.383599
[INFO random_forest.cc:628] Training of tree  601/1000 (tree index:601) done accuracy:0.8148 logloss:0.383524
[INFO random_forest.cc:628] Training of tree  611/1000 (tree index:608) done accuracy:0.8156 logloss:0.383555
[INFO random_forest.cc:628] Training of tree  621/1000 (tree index:619) done accuracy:0.8132 logloss:0.382847
[INFO random_forest.cc:628] Training of tree  631/1000 (tree index:632) done accuracy:0.8124 logloss:0.382872
[INFO random_forest.cc:628] Training of tree  641/1000 (tree index:641) done accuracy:0.8144 logloss:0.382728
[INFO random_forest.cc:628] Training of tree  651/1000 (tree index:648) done accuracy:0.8132 logloss:0.382554
[INFO random_forest.cc:628] Training of tree  661/1000 (tree index:658) done accuracy:0.8128 logloss:0.382705
[INFO random_forest.cc:628] Training of tree  671/1000 (tree index:670) done accuracy:0.8136 logloss:0.38288
[INFO random_forest.cc:628] Training of tree  681/1000 (tree index:682) done accuracy:0.8152 logloss:0.383007
[INFO random_forest.cc:628] Training of tree  691/1000 (tree index:690) done accuracy:0.8144 logloss:0.382971
[INFO random_forest.cc:628] Training of tree  701/1000 (tree index:698) done accuracy:0.8152 logloss:0.382869
[INFO random_forest.cc:628] Training of tree  711/1000 (tree index:708) done accuracy:0.8152 logloss:0.382792
[INFO random_forest.cc:628] Training of tree  721/1000 (tree index:722) done accuracy:0.8136 logloss:0.38274
[INFO random_forest.cc:628] Training of tree  731/1000 (tree index:732) done accuracy:0.8144 logloss:0.38268
[INFO random_forest.cc:628] Training of tree  741/1000 (tree index:740) done accuracy:0.814 logloss:0.382835
[INFO random_forest.cc:628] Training of tree  751/1000 (tree index:751) done accuracy:0.8152 logloss:0.38297
[INFO random_forest.cc:628] Training of tree  761/1000 (tree index:758) done accuracy:0.8152 logloss:0.382917
[INFO random_forest.cc:628] Training of tree  771/1000 (tree index:770) done accuracy:0.8156 logloss:0.370596
[INFO random_forest.cc:628] Training of tree  781/1000 (tree index:782) done accuracy:0.816 logloss:0.370687
[INFO random_forest.cc:628] Training of tree  791/1000 (tree index:789) done accuracy:0.8164 logloss:0.37068
[INFO random_forest.cc:628] Training of tree  801/1000 (tree index:798) done accuracy:0.8172 logloss:0.370535
[INFO random_forest.cc:628] Training of tree  811/1000 (tree index:809) done accuracy:0.816 logloss:0.370674
[INFO random_forest.cc:628] Training of tree  821/1000 (tree index:821) done accuracy:0.816 logloss:0.370929
[INFO random_forest.cc:628] Training of tree  831/1000 (tree index:829) done accuracy:0.8148 logloss:0.370904
[INFO random_forest.cc:628] Training of tree  841/1000 (tree index:841) done accuracy:0.8164 logloss:0.371016
[INFO random_forest.cc:628] Training of tree  851/1000 (tree index:849) done accuracy:0.8168 logloss:0.370914
[INFO random_forest.cc:628] Training of tree  861/1000 (tree index:860) done accuracy:0.8164 logloss:0.371043
[INFO random_forest.cc:628] Training of tree  871/1000 (tree index:871) done accuracy:0.8168 logloss:0.371094
[INFO random_forest.cc:628] Training of tree  881/1000 (tree index:878) done accuracy:0.8152 logloss:0.371054
[INFO random_forest.cc:628] Training of tree  891/1000 (tree index:888) done accuracy:0.8156 logloss:0.370908
[INFO random_forest.cc:628] Training of tree  901/1000 (tree index:900) done accuracy:0.8156 logloss:0.370831
[INFO random_forest.cc:628] Training of tree  911/1000 (tree index:910) done accuracy:0.8152 logloss:0.370775
[INFO random_forest.cc:628] Training of tree  921/1000 (tree index:922) done accuracy:0.814 logloss:0.370804
[INFO random_forest.cc:628] Training of tree  931/1000 (tree index:929) done accuracy:0.8148 logloss:0.370495
[INFO random_forest.cc:628] Training of tree  941/1000 (tree index:941) done accuracy:0.816 logloss:0.370443
[INFO random_forest.cc:628] Training of tree  951/1000 (tree index:948) done accuracy:0.8156 logloss:0.370486
[INFO random_forest.cc:628] Training of tree  961/1000 (tree index:960) done accuracy:0.8152 logloss:0.370519
[INFO random_forest.cc:628] Training of tree  971/1000 (tree index:971) done accuracy:0.8144 logloss:0.370543
[INFO random_forest.cc:628] Training of tree  981/1000 (tree index:983) done accuracy:0.8144 logloss:0.370629
[INFO random_forest.cc:628] Training of tree  991/1000 (tree index:991) done accuracy:0.814 logloss:0.370625
[INFO random_forest.cc:628] Training of tree  1000/1000 (tree index:998) done accuracy:0.8144 logloss:0.370667
[INFO random_forest.cc:696] Final OOB metrics: accuracy:0.8144 logloss:0.370667
[INFO kernel.cc:828] Export model in log directory: /tmp/tmp9izglk4r
[INFO kernel.cc:836] Save model in resources
[INFO kernel.cc:988] Loading model from path
40/40 [==============================] - 6s 66ms/step
[INFO decision_forest.cc:590] Model loaded with 1000 root(s), 324508 node(s), and 10 input feature(s).
[INFO abstract_model.cc:993] Engine "RandomForestOptPred" built
[INFO kernel.cc:848] Use fast generic engine
24/40 [=================>............] - ETA: 0s
[INFO kernel.cc:736] Start Yggdrasil model training
[INFO kernel.cc:737] Collect training examples
[INFO kernel.cc:392] Number of batches: 40
[INFO kernel.cc:393] Number of examples: 2500
[INFO kernel.cc:759] Dataset:
Number of records: 2500
Number of columns: 11

Number of columns by type:
    NUMERICAL: 10 (90.9091%)
    CATEGORICAL: 1 (9.09091%)

Columns:

NUMERICAL: 10 (90.9091%)
    0: "data:0.0" NUMERICAL mean:0.356465 min:0 max:2.37352 sd:0.451418
    1: "data:0.1" NUMERICAL mean:0.392088 min:0 max:2.3411 sd:0.470499
    2: "data:0.2" NUMERICAL mean:0.382386 min:0 max:2.11809 sd:0.483672
    3: "data:0.3" NUMERICAL mean:0.290395 min:0 max:2.27481 sd:0.400102
    4: "data:0.4" NUMERICAL mean:0.210684 min:0 max:1.35897 sd:0.281379
    5: "data:0.5" NUMERICAL mean:0.4008 min:0 max:2.06561 sd:0.453018
    6: "data:0.6" NUMERICAL mean:0.289166 min:0 max:2.0263 sd:0.407337
    7: "data:0.7" NUMERICAL mean:0.277971 min:0 max:1.77561 sd:0.363215
    8: "data:0.8" NUMERICAL mean:0.41254 min:0 max:2.79804 sd:0.553333
    9: "data:0.9" NUMERICAL mean:0.197082 min:0 max:1.60773 sd:0.298194

CATEGORICAL: 1 (9.09091%)
    10: "__LABEL" CATEGORICAL integerized vocab-size:3 no-ood-item

Terminology:
    nas: Number of non-available (i.e. missing) values.
    ood: Out of dictionary.
    manually-defined: Attribute which type is manually defined by the user i.e. the type was not automatically inferred.
    tokenized: The attribute value is obtained through tokenization.
    has-dict: The attribute is attached to a string dictionary e.g. a categorical attribute stored as a string.
    vocab-size: Number of unique values.

[INFO kernel.cc:762] Configure learner
[INFO kernel.cc:787] Training config:
learner: "RANDOM_FOREST"
features: "data:0\\.0"
features: "data:0\\.1"
features: "data:0\\.2"
features: "data:0\\.3"
features: "data:0\\.4"
features: "data:0\\.5"
features: "data:0\\.6"
features: "data:0\\.7"
features: "data:0\\.8"
features: "data:0\\.9"
label: "__LABEL"
task: CLASSIFICATION
random_seed: 4567
[yggdrasil_decision_forests.model.random_forest.proto.random_forest_config] {
  num_trees: 1000
  decision_tree {
    max_depth: 16
    min_examples: 5
    in_split_min_examples_check: true
    missing_value_policy: GLOBAL_IMPUTATION
    allow_na_conditions: false
    categorical_set_greedy_forward {
      sampling: 0.1
      max_num_items: -1
      min_item_frequency: 1
    }
    growing_strategy_local {
    }
    categorical {
      cart {
      }
    }
    num_candidate_attributes_ratio: -1
    axis_aligned_split {
    }
    internal {
      sorting_strategy: PRESORTED
    }
  }
  winner_take_all_inference: true
  compute_oob_performances: true
  compute_oob_variable_importances: false
  adapt_bootstrap_size_ratio_for_maximum_training_duration: false
}

[INFO kernel.cc:790] Deployment config:
num_threads: 6

[INFO kernel.cc:817] Train model
[INFO random_forest.cc:315] Training random forest on 2500 example(s) and 10 feature(s).
[INFO random_forest.cc:628] Training of tree  1/1000 (tree index:1) done accuracy:0.783262 logloss:7.81204
[INFO random_forest.cc:628] Training of tree  11/1000 (tree index:9) done accuracy:0.801127 logloss:2.73187
[INFO random_forest.cc:628] Training of tree  21/1000 (tree index:19) done accuracy:0.811449 logloss:1.1286
[INFO random_forest.cc:628] Training of tree  31/1000 (tree index:32) done accuracy:0.8132 logloss:0.910787
[INFO random_forest.cc:628] Training of tree  41/1000 (tree index:42) done accuracy:0.812 logloss:0.745694
[INFO random_forest.cc:628] Training of tree  51/1000 (tree index:48) done accuracy:0.8144 logloss:0.690226
[INFO random_forest.cc:628] Training of tree  61/1000 (tree index:59) done accuracy:0.8136 logloss:0.659137
[INFO random_forest.cc:628] Training of tree  71/1000 (tree index:72) done accuracy:0.8176 logloss:0.577357
[INFO random_forest.cc:628] Training of tree  81/1000 (tree index:79) done accuracy:0.814 logloss:0.565115
[INFO random_forest.cc:628] Training of tree  91/1000 (tree index:91) done accuracy:0.8156 logloss:0.56459
[INFO random_forest.cc:628] Training of tree  101/1000 (tree index:99) done accuracy:0.8148 logloss:0.564104
[INFO random_forest.cc:628] Training of tree  111/1000 (tree index:109) done accuracy:0.8172 logloss:0.537417
[INFO random_forest.cc:628] Training of tree  121/1000 (tree index:120) done accuracy:0.8156 logloss:0.524543
[INFO random_forest.cc:628] Training of tree  131/1000 (tree index:132) done accuracy:0.8152 logloss:0.511111
[INFO random_forest.cc:628] Training of tree  141/1000 (tree index:141) done accuracy:0.816 logloss:0.498209
[INFO random_forest.cc:628] Training of tree  151/1000 (tree index:150) done accuracy:0.8192 logloss:0.485477
[INFO random_forest.cc:628] Training of tree  161/1000 (tree index:160) done accuracy:0.8196 logloss:0.472341
[INFO random_forest.cc:628] Training of tree  171/1000 (tree index:171) done accuracy:0.818 logloss:0.459903
[INFO random_forest.cc:628] Training of tree  181/1000 (tree index:182) done accuracy:0.8172 logloss:0.459812
[INFO random_forest.cc:628] Training of tree  191/1000 (tree index:190) done accuracy:0.8192 logloss:0.459588
[INFO random_forest.cc:628] Training of tree  201/1000 (tree index:199) done accuracy:0.818 logloss:0.459855
[INFO random_forest.cc:628] Training of tree  211/1000 (tree index:209) done accuracy:0.8176 logloss:0.459088
[INFO random_forest.cc:628] Training of tree  221/1000 (tree index:221) done accuracy:0.8168 logloss:0.43377
[INFO random_forest.cc:628] Training of tree  231/1000 (tree index:233) done accuracy:0.8196 logloss:0.433567
[INFO random_forest.cc:628] Training of tree  241/1000 (tree index:241) done accuracy:0.8208 logloss:0.434371
[INFO random_forest.cc:628] Training of tree  251/1000 (tree index:250) done accuracy:0.8192 logloss:0.434301
[INFO random_forest.cc:628] Training of tree  261/1000 (tree index:260) done accuracy:0.8172 logloss:0.43402
[INFO random_forest.cc:628] Training of tree  271/1000 (tree index:271) done accuracy:0.818 logloss:0.433583
[INFO random_forest.cc:628] Training of tree  281/1000 (tree index:283) done accuracy:0.8184 logloss:0.420657
[INFO random_forest.cc:628] Training of tree  291/1000 (tree index:291) done accuracy:0.8168 logloss:0.420481
[INFO random_forest.cc:628] Training of tree  301/1000 (tree index:299) done accuracy:0.82 logloss:0.419901
[INFO random_forest.cc:628] Training of tree  311/1000 (tree index:312) done accuracy:0.8188 logloss:0.419881
[INFO random_forest.cc:628] Training of tree  321/1000 (tree index:319) done accuracy:0.8172 logloss:0.419582
[INFO random_forest.cc:628] Training of tree  331/1000 (tree index:332) done accuracy:0.8176 logloss:0.419608
[INFO random_forest.cc:628] Training of tree  341/1000 (tree index:341) done accuracy:0.816 logloss:0.419608
[INFO random_forest.cc:628] Training of tree  351/1000 (tree index:352) done accuracy:0.8152 logloss:0.419729
[INFO random_forest.cc:628] Training of tree  361/1000 (tree index:361) done accuracy:0.8152 logloss:0.419264
[INFO random_forest.cc:628] Training of tree  371/1000 (tree index:369) done accuracy:0.8148 logloss:0.418932
[INFO random_forest.cc:628] Training of tree  381/1000 (tree index:379) done accuracy:0.8156 logloss:0.419148
[INFO random_forest.cc:628] Training of tree  391/1000 (tree index:391) done accuracy:0.8164 logloss:0.419344
[INFO random_forest.cc:628] Training of tree  401/1000 (tree index:398) done accuracy:0.8156 logloss:0.419051
[INFO random_forest.cc:628] Training of tree  411/1000 (tree index:408) done accuracy:0.8168 logloss:0.406486
[INFO random_forest.cc:628] Training of tree  421/1000 (tree index:420) done accuracy:0.8168 logloss:0.406477
[INFO random_forest.cc:628] Training of tree  431/1000 (tree index:430) done accuracy:0.816 logloss:0.406362
[INFO random_forest.cc:628] Training of tree  441/1000 (tree index:440) done accuracy:0.8172 logloss:0.406377
[INFO random_forest.cc:628] Training of tree  451/1000 (tree index:448) done accuracy:0.8176 logloss:0.406083
[INFO random_forest.cc:628] Training of tree  461/1000 (tree index:458) done accuracy:0.8172 logloss:0.406205
[INFO random_forest.cc:628] Training of tree  471/1000 (tree index:474) done accuracy:0.8168 logloss:0.406437
[INFO random_forest.cc:628] Training of tree  481/1000 (tree index:482) done accuracy:0.8184 logloss:0.406287
[INFO random_forest.cc:628] Training of tree  491/1000 (tree index:490) done accuracy:0.8172 logloss:0.40588
[INFO random_forest.cc:628] Training of tree  501/1000 (tree index:498) done accuracy:0.816 logloss:0.406036
[INFO random_forest.cc:628] Training of tree  511/1000 (tree index:508) done accuracy:0.8164 logloss:0.406053
[INFO random_forest.cc:628] Training of tree  521/1000 (tree index:524) done accuracy:0.8168 logloss:0.405945
[INFO random_forest.cc:628] Training of tree  531/1000 (tree index:530) done accuracy:0.816 logloss:0.405778
[INFO random_forest.cc:628] Training of tree  541/1000 (tree index:540) done accuracy:0.8156 logloss:0.405737
[INFO random_forest.cc:628] Training of tree  551/1000 (tree index:552) done accuracy:0.8156 logloss:0.406028
[INFO random_forest.cc:628] Training of tree  561/1000 (tree index:559) done accuracy:0.8164 logloss:0.406081
[INFO random_forest.cc:628] Training of tree  571/1000 (tree index:569) done accuracy:0.8152 logloss:0.405734
[INFO random_forest.cc:628] Training of tree  581/1000 (tree index:579) done accuracy:0.8172 logloss:0.393451
[INFO random_forest.cc:628] Training of tree  591/1000 (tree index:591) done accuracy:0.816 logloss:0.393428
[INFO random_forest.cc:628] Training of tree  601/1000 (tree index:603) done accuracy:0.8156 logloss:0.393545
[INFO random_forest.cc:628] Training of tree  611/1000 (tree index:609) done accuracy:0.8156 logloss:0.3934
[INFO random_forest.cc:628] Training of tree  621/1000 (tree index:620) done accuracy:0.8148 logloss:0.393539
[INFO random_forest.cc:628] Training of tree  631/1000 (tree index:629) done accuracy:0.8156 logloss:0.393731
[INFO random_forest.cc:628] Training of tree  641/1000 (tree index:641) done accuracy:0.8164 logloss:0.39383
[INFO random_forest.cc:628] Training of tree  651/1000 (tree index:649) done accuracy:0.8152 logloss:0.393724
[INFO random_forest.cc:628] Training of tree  661/1000 (tree index:659) done accuracy:0.8152 logloss:0.393764
[INFO random_forest.cc:628] Training of tree  671/1000 (tree index:670) done accuracy:0.816 logloss:0.393834
[INFO random_forest.cc:628] Training of tree  681/1000 (tree index:680) done accuracy:0.8156 logloss:0.393894
[INFO random_forest.cc:628] Training of tree  691/1000 (tree index:689) done accuracy:0.8152 logloss:0.393746
[INFO random_forest.cc:628] Training of tree  701/1000 (tree index:698) done accuracy:0.814 logloss:0.393743
[INFO random_forest.cc:628] Training of tree  711/1000 (tree index:708) done accuracy:0.8152 logloss:0.393294
[INFO random_forest.cc:628] Training of tree  721/1000 (tree index:721) done accuracy:0.816 logloss:0.393451
[INFO random_forest.cc:628] Training of tree  731/1000 (tree index:733) done accuracy:0.8164 logloss:0.393486
[INFO random_forest.cc:628] Training of tree  741/1000 (tree index:739) done accuracy:0.8156 logloss:0.393553
[INFO random_forest.cc:628] Training of tree  751/1000 (tree index:751) done accuracy:0.816 logloss:0.393731
[INFO random_forest.cc:628] Training of tree  761/1000 (tree index:758) done accuracy:0.8172 logloss:0.393635
[INFO random_forest.cc:628] Training of tree  771/1000 (tree index:769) done accuracy:0.8164 logloss:0.393584
[INFO random_forest.cc:628] Training of tree  781/1000 (tree index:779) done accuracy:0.8184 logloss:0.393728
[INFO random_forest.cc:628] Training of tree  791/1000 (tree index:789) done accuracy:0.8192 logloss:0.393858
[INFO random_forest.cc:628] Training of tree  801/1000 (tree index:800) done accuracy:0.8184 logloss:0.381756
[INFO random_forest.cc:628] Training of tree  811/1000 (tree index:813) done accuracy:0.82 logloss:0.38174
[INFO random_forest.cc:628] Training of tree  821/1000 (tree index:819) done accuracy:0.8196 logloss:0.381865
[INFO random_forest.cc:628] Training of tree  831/1000 (tree index:829) done accuracy:0.8172 logloss:0.381929
[INFO random_forest.cc:628] Training of tree  841/1000 (tree index:838) done accuracy:0.8164 logloss:0.382007
[INFO random_forest.cc:628] Training of tree  851/1000 (tree index:850) done accuracy:0.8172 logloss:0.382099
[INFO random_forest.cc:628] Training of tree  861/1000 (tree index:863) done accuracy:0.8172 logloss:0.381937
[INFO random_forest.cc:628] Training of tree  871/1000 (tree index:869) done accuracy:0.8168 logloss:0.382131
[INFO random_forest.cc:628] Training of tree  881/1000 (tree index:879) done accuracy:0.8188 logloss:0.381963
[INFO random_forest.cc:628] Training of tree  891/1000 (tree index:889) done accuracy:0.8192 logloss:0.382052
[INFO random_forest.cc:628] Training of tree  901/1000 (tree index:901) done accuracy:0.8184 logloss:0.382174
[INFO random_forest.cc:628] Training of tree  911/1000 (tree index:913) done accuracy:0.8192 logloss:0.382273
[INFO random_forest.cc:628] Training of tree  921/1000 (tree index:919) done accuracy:0.82 logloss:0.382407
[INFO random_forest.cc:628] Training of tree  931/1000 (tree index:929) done accuracy:0.8216 logloss:0.382277
[INFO random_forest.cc:628] Training of tree  941/1000 (tree index:939) done accuracy:0.8204 logloss:0.382434
[INFO random_forest.cc:628] Training of tree  951/1000 (tree index:951) done accuracy:0.8192 logloss:0.382444
[INFO random_forest.cc:628] Training of tree  961/1000 (tree index:959) done accuracy:0.8192 logloss:0.382497
[INFO random_forest.cc:628] Training of tree  971/1000 (tree index:969) done accuracy:0.8188 logloss:0.382592
[INFO random_forest.cc:628] Training of tree  981/1000 (tree index:979) done accuracy:0.8192 logloss:0.382657
[INFO random_forest.cc:628] Training of tree  991/1000 (tree index:989) done accuracy:0.8188 logloss:0.382671
[INFO random_forest.cc:628] Training of tree  1000/1000 (tree index:997) done accuracy:0.8192 logloss:0.38269
[INFO random_forest.cc:696] Final OOB metrics: accuracy:0.8192 logloss:0.38269
[INFO kernel.cc:828] Export model in log directory: /tmp/tmp0r9hhl7d
[INFO kernel.cc:836] Save model in resources
[INFO kernel.cc:988] Loading model from path
40/40 [==============================] - 3s 64ms/step
[INFO decision_forest.cc:590] Model loaded with 1000 root(s), 324942 node(s), and 10 input feature(s).
[INFO kernel.cc:848] Use fast generic engine
CPU times: user 21.5 s, sys: 755 ms, total: 22.2 s
Wall time: 10.5 s
<keras.callbacks.History at 0x7f6b7874c4d0>

E vamos avaliar as Florestas de Decisão individualmente.

model_3.compile(["accuracy"])
model_4.compile(["accuracy"])

evaluation_df3_only = model_3.evaluate(
    test_dataset_with_preprocessing, return_dict=True)
evaluation_df4_only = model_4.evaluate(
    test_dataset_with_preprocessing, return_dict=True)

print("Accuracy (DF #3 only): ", evaluation_df3_only["accuracy"])
print("Accuracy (DF #4 only): ", evaluation_df4_only["accuracy"])
157/157 [==============================] - 2s 8ms/step - loss: 0.0000e+00 - accuracy: 0.8218
157/157 [==============================] - 1s 8ms/step - loss: 0.0000e+00 - accuracy: 0.8223
Accuracy (DF #3 only):  0.8217999935150146
Accuracy (DF #4 only):  0.8223000168800354

Vamos avaliar toda a composição do modelo:

ensemble_nn_and_df.compile(
    loss=tf.keras.losses.BinaryCrossentropy(), metrics=["accuracy"])

evaluation_nn_and_df = ensemble_nn_and_df.evaluate(
    test_dataset, return_dict=True)

print("Accuracy (2xNN and 2xDF): ", evaluation_nn_and_df["accuracy"])
print("Loss (2xNN and 2xDF): ", evaluation_nn_and_df["loss"])
157/157 [==============================] - 2s 8ms/step - loss: 0.3707 - accuracy: 0.8236
Accuracy (2xNN and 2xDF):  0.8235999941825867
Loss (2xNN and 2xDF):  0.3706760108470917

Para terminar, vamos ajustar a camada de rede neural um pouco mais. Observe que não ajustamos a incorporação pré-treinada, pois os modelos DF dependem dela (a menos que também os retreinemos depois).

Em resumo, você tem:

Accuracy (NN #1 and #2 only): 0.820300
Accuracy (DF #3 only):        0.821800
Accuracy (DF #4 only):        0.822300
----------------------------------------
Accuracy (2xNN and 2xDF): 0.823600
                  +0.003300 over NN #1 and #2 only
                  +0.001800 over DF #3 only
                  +0.001300 over DF #4 only

Aqui, você pode ver que o modelo composto tem um desempenho melhor do que suas partes individuais. É por isso que os conjuntos funcionam tão bem.

Qual é o próximo?

Neste exemplo, você viu como combinar florestas de decisão com redes neurais. Uma etapa extra seria treinar ainda mais a rede neural e as florestas de decisão juntas.

Além disso, para fins de clareza, as florestas de decisão receberam apenas os insumos pré-processados. No entanto, as florestas de decisão geralmente são grandes e estão consumindo dados brutos. O modelo seria melhorado também alimentando os recursos brutos para os modelos de floresta de decisão.

Neste exemplo, o modelo final é a média das previsões dos modelos individuais. Essa solução funciona bem se todo o modelo tiver mais desempenho ou menos com o mesmo. No entanto, se um dos submodelos for muito bom, agregá-lo a outros modelos pode ser prejudicial (ou vice-versa; por exemplo, tente reduzir o número de exemplos de 1k e veja como isso prejudica muito as redes neurais; ou permitir a SPARSE_OBLIQUE separação no segundo modelo aleatório Floresta).