Aiuto proteggere la Grande Barriera Corallina con tensorflow sul Kaggle Join Sfida

Migrazione di feature_columns ai livelli di preelaborazione Keras di TF2

Visualizza su TensorFlow.org Esegui in Google Colab Visualizza la fonte su GitHub Scarica taccuino

L'addestramento di un modello di solito viene fornito con una certa quantità di pre-elaborazione delle funzionalità, in particolare quando si tratta di dati strutturati. Quando la formazione di un tf.estimator.Estimator in TF1, questa funzione pre-elaborazione di solito è fatto con il tf.feature_column API. In TF2, questo preelaborazione può essere fatto direttamente con strati KERAS, chiamato preelaborazione strati.

In questa guida alla migrazione, eseguirai alcune trasformazioni di funzionalità comuni utilizzando sia colonne di funzionalità che livelli di pre-elaborazione, seguite dall'addestramento di un modello completo con entrambe le API.

Innanzitutto, inizia con un paio di importazioni necessarie,

import tensorflow as tf
import tensorflow.compat.v1 as tf1
import math

e aggiungi un'utilità per chiamare una colonna di funzionalità per la dimostrazione:

def call_feature_columns(feature_columns, inputs):
  # This is a convenient way to call a `feature_column` outside of an estimator
  # to display its output.
  feature_layer = tf1.keras.layers.DenseFeatures(feature_columns)
  return feature_layer(inputs)

Gestione degli input

Per utilizzare colonne di funzionalità con uno stimatore, ci si aspetta sempre che gli input del modello siano un dizionario di tensori:

input_dict = {
  'foo': tf.constant([1]),
  'bar': tf.constant([0]),
  'baz': tf.constant([-1])
}

Ogni colonna caratteristica deve essere creata con una chiave da indicizzare nei dati di origine. L'output di tutte le colonne di feature viene concatenato e utilizzato dal modello di stima.

columns = [
  tf1.feature_column.numeric_column('foo'),
  tf1.feature_column.numeric_column('bar'),
  tf1.feature_column.numeric_column('baz'),
]
call_feature_columns(columns, input_dict)
<tf.Tensor: shape=(1, 3), dtype=float32, numpy=array([[ 0., -1.,  1.]], dtype=float32)>

In Keras, l'input del modello è molto più flessibile. Un tf.keras.Model in grado di gestire un singolo ingresso tensore, un elenco di caratteristiche tensore, o un dizionario di tensore caratteristiche. È possibile gestire l'input dizionario passando un dizionario di tf.keras.Input sulla creazione del modello. Gli input non verranno concatenati automaticamente, il che consente loro di essere utilizzati in modi molto più flessibili. Possono essere concatenate con tf.keras.layers.Concatenate .

inputs = {
  'foo': tf.keras.Input(shape=()),
  'bar': tf.keras.Input(shape=()),
  'baz': tf.keras.Input(shape=()),
}
# Inputs are typically transformed by preprocessing layers before concatenation.
outputs = tf.keras.layers.Concatenate()(inputs.values())
model = tf.keras.Model(inputs=inputs, outputs=outputs)
model(input_dict)
<tf.Tensor: shape=(3,), dtype=float32, numpy=array([ 1.,  0., -1.], dtype=float32)>

ID interi con codifica one-hot

Una trasformazione di funzionalità comune è la codifica one-hot di input interi di un intervallo noto. Ecco un esempio che utilizza le colonne di funzionalità:

categorical_col = tf1.feature_column.categorical_column_with_identity(
    'type', num_buckets=3)
indicator_col = tf1.feature_column.indicator_column(categorical_col)
call_feature_columns(indicator_col, {'type': [0, 1, 2]})
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]], dtype=float32)>

Utilizzando Keras preelaborazione strati, queste colonne possono essere sostituiti da un unico tf.keras.layers.CategoryEncoding strato con output_mode set di 'one_hot' :

one_hot_layer = tf.keras.layers.CategoryEncoding(
    num_tokens=3, output_mode='one_hot')
one_hot_layer([0, 1, 2])
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]], dtype=float32)>

Normalizzazione delle caratteristiche numeriche

Quando si maneggia, floating-point continua presenta con funzionalità colonne, è necessario utilizzare un tf.feature_column.numeric_column . Nel caso in cui l'input sia già normalizzato, convertirlo in Keras è banale. Si può semplicemente utilizzare un tf.keras.Input direttamente nel modello, come indicato sopra.

Un numeric_column può essere utilizzata anche per inserire normalizzare:

def normalize(x):
  mean, variance = (2.0, 1.0)
  return (x - mean) / math.sqrt(variance)
numeric_col = tf1.feature_column.numeric_column('col', normalizer_fn=normalize)
call_feature_columns(numeric_col, {'col': tf.constant([[0.], [1.], [2.]])})
<tf.Tensor: shape=(3, 1), dtype=float32, numpy=
array([[-2.],
       [-1.],
       [ 0.]], dtype=float32)>

Al contrario, con Keras, questa normalizzazione può essere fatto con tf.keras.layers.Normalization .

normalization_layer = tf.keras.layers.Normalization(mean=2.0, variance=1.0)
normalization_layer(tf.constant([[0.], [1.], [2.]]))
<tf.Tensor: shape=(3, 1), dtype=float32, numpy=
array([[-2.],
       [-1.],
       [ 0.]], dtype=float32)>

Funzioni numeriche di bucketizzazione e codifica one-hot

Un'altra trasformazione comune di input in virgola mobile continui consiste nel bucketizzare quindi in numeri interi di un intervallo fisso.

In funzione colonne, questo può essere ottenuto con una tf.feature_column.bucketized_column :

numeric_col = tf1.feature_column.numeric_column('col')
bucketized_col = tf1.feature_column.bucketized_column(numeric_col, [1, 4, 5])
call_feature_columns(bucketized_col, {'col': tf.constant([1., 2., 3., 4., 5.])})
<tf.Tensor: shape=(5, 4), dtype=float32, numpy=
array([[0., 1., 0., 0.],
       [0., 1., 0., 0.],
       [0., 1., 0., 0.],
       [0., 0., 1., 0.],
       [0., 0., 0., 1.]], dtype=float32)>

In Keras, questo può essere sostituito da tf.keras.layers.Discretization :

discretization_layer = tf.keras.layers.Discretization(bin_boundaries=[1, 4, 5])
one_hot_layer = tf.keras.layers.CategoryEncoding(
    num_tokens=4, output_mode='one_hot')
one_hot_layer(discretization_layer([1., 2., 3., 4., 5.]))
<tf.Tensor: shape=(5, 4), dtype=float32, numpy=
array([[0., 1., 0., 0.],
       [0., 1., 0., 0.],
       [0., 1., 0., 0.],
       [0., 0., 1., 0.],
       [0., 0., 0., 1.]], dtype=float32)>

Dati di stringa di codifica one-hot con un vocabolario

La gestione delle funzionalità delle stringhe spesso richiede una ricerca nel vocabolario per tradurre le stringhe in indici. Ecco un esempio che utilizza le colonne di funzionalità per cercare le stringhe e quindi codificare gli indici a caldo:

vocab_col = tf1.feature_column.categorical_column_with_vocabulary_list(
    'sizes',
    vocabulary_list=['small', 'medium', 'large'],
    num_oov_buckets=0)
indicator_col = tf1.feature_column.indicator_column(vocab_col)
call_feature_columns(indicator_col, {'sizes': ['small', 'medium', 'large']})
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]], dtype=float32)>

Utilizzando KERAS strati pre-elaborazione, utilizzare il tf.keras.layers.StringLookup strato con output_mode set di 'one_hot' :

string_lookup_layer = tf.keras.layers.StringLookup(
    vocabulary=['small', 'medium', 'large'],
    num_oov_indices=0,
    output_mode='one_hot')
string_lookup_layer(['small', 'medium', 'large'])
<tf.Tensor: shape=(3, 3), dtype=float32, numpy=
array([[1., 0., 0.],
       [0., 1., 0.],
       [0., 0., 1.]], dtype=float32)>

Incorporare dati di stringa con un vocabolario

Per i vocabolari più grandi, è spesso necessario un incorporamento per una buona prestazione. Di seguito è riportato un esempio di incorporamento di una feature stringa utilizzando colonne di feature:

vocab_col = tf1.feature_column.categorical_column_with_vocabulary_list(
    'col',
    vocabulary_list=['small', 'medium', 'large'],
    num_oov_buckets=0)
embedding_col = tf1.feature_column.embedding_column(vocab_col, 4)
call_feature_columns(embedding_col, {'col': ['small', 'medium', 'large']})
<tf.Tensor: shape=(3, 4), dtype=float32, numpy=
array([[-0.01798586, -0.2808677 ,  0.27639154,  0.06081508],
       [ 0.05771849,  0.02464074,  0.20080602,  0.50164527],
       [-0.9208247 , -0.40816694, -0.49132794,  0.9203153 ]],
      dtype=float32)>

Utilizzando KERAS strati pre-elaborazione, ciò può essere ottenuto combinando una tf.keras.layers.StringLookup strato ed un tf.keras.layers.Embedding strato. L'output predefinito per lo StringLookup sarà intero indici che possono essere alimentati direttamente in un'immersione.

string_lookup_layer = tf.keras.layers.StringLookup(
    vocabulary=['small', 'medium', 'large'], num_oov_indices=0)
embedding = tf.keras.layers.Embedding(3, 4)
embedding(string_lookup_layer(['small', 'medium', 'large']))
<tf.Tensor: shape=(3, 4), dtype=float32, numpy=
array([[ 0.04838837, -0.04014301,  0.02001903, -0.01150769],
       [-0.04580117, -0.04319514,  0.03725603, -0.00572466],
       [-0.0401094 ,  0.00997342,  0.00111955,  0.00132702]],
      dtype=float32)>

Sommare dati categoriali ponderati

In alcuni casi, è necessario trattare dati categoriali in cui ogni occorrenza di una categoria ha un peso associato. In caratteristica colonne, questo viene gestito con tf.feature_column.weighted_categorical_column . Quando accoppiato con indicator_column , questo ha l'effetto di riassumere pesi per categoria.

ids = tf.constant([[5, 11, 5, 17, 17]])
weights = tf.constant([[0.5, 1.5, 0.7, 1.8, 0.2]])

categorical_col = tf1.feature_column.categorical_column_with_identity(
    'ids', num_buckets=20)
weighted_categorical_col = tf1.feature_column.weighted_categorical_column(
    categorical_col, 'weights')
indicator_col = tf1.feature_column.indicator_column(weighted_categorical_col)
call_feature_columns(indicator_col, {'ids': ids, 'weights': weights})
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/feature_column/feature_column_v2.py:4203: sparse_merge (from tensorflow.python.ops.sparse_ops) is deprecated and will be removed in a future version.
Instructions for updating:
No similar op available at this time.
<tf.Tensor: shape=(1, 20), dtype=float32, numpy=
array([[0. , 0. , 0. , 0. , 0. , 1.2, 0. , 0. , 0. , 0. , 0. , 1.5, 0. ,

        0. , 0. , 0. , 0. , 2. , 0. , 0. ]], dtype=float32)>

In Keras, questo può essere fatto facendo passare un count_weights ingresso tf.keras.layers.CategoryEncoding con output_mode='count' .

ids = tf.constant([[5, 11, 5, 17, 17]])
weights = tf.constant([[0.5, 1.5, 0.7, 1.8, 0.2]])

# Using sparse output is more efficient when `num_tokens` is large.
count_layer = tf.keras.layers.CategoryEncoding(
    num_tokens=20, output_mode='count', sparse=True)
tf.sparse.to_dense(count_layer(ids, count_weights=weights))
<tf.Tensor: shape=(1, 20), dtype=float32, numpy=
array([[0. , 0. , 0. , 0. , 0. , 1.2, 0. , 0. , 0. , 0. , 0. , 1.5, 0. ,

        0. , 0. , 0. , 0. , 2. , 0. , 0. ]], dtype=float32)>

Incorporamento di dati categorici ponderati

In alternativa, potresti voler incorporare input categoriali ponderati. In funzione colonne, embedding_column contiene un combiner argomento. Se un campione contiene più voci per una categoria, che saranno combinati in base all'impostazione argomento (di default 'mean' ).

ids = tf.constant([[5, 11, 5, 17, 17]])
weights = tf.constant([[0.5, 1.5, 0.7, 1.8, 0.2]])

categorical_col = tf1.feature_column.categorical_column_with_identity(
    'ids', num_buckets=20)
weighted_categorical_col = tf1.feature_column.weighted_categorical_column(
    categorical_col, 'weights')
embedding_col = tf1.feature_column.embedding_column(
    weighted_categorical_col, 4, combiner='mean')
call_feature_columns(embedding_col, {'ids': ids, 'weights': weights})
<tf.Tensor: shape=(1, 4), dtype=float32, numpy=
array([[ 0.02666993,  0.289671  ,  0.18065728, -0.21045178]],
      dtype=float32)>

In Keras, non v'è alcuna combiner opzione per tf.keras.layers.Embedding , ma è possibile acheive lo stesso effetto con tf.keras.layers.Dense . embedding_column sopra è semplicemente combinando linearmente vettori incorporano secondo categoria di peso. Anche se non evidente a prima, è esattamente equivalente a rappresentare gli input categoriali come peso vettore rada di dimensioni (num_tokens) , e li mutiplying da un Dense nucleo di forma (embedding_size, num_tokens) .

ids = tf.constant([[5, 11, 5, 17, 17]])
weights = tf.constant([[0.5, 1.5, 0.7, 1.8, 0.2]])

# For `combiner='mean'`, normalize your weights to sum to 1. Removing this line
# would be eqivalent to an `embedding_column` with `combiner='sum'`.
weights = weights / tf.reduce_sum(weights, axis=-1, keepdims=True)

count_layer = tf.keras.layers.CategoryEncoding(
    num_tokens=20, output_mode='count', sparse=True)
embedding_layer = tf.keras.layers.Dense(4, use_bias=False)
embedding_layer(count_layer(ids, count_weights=weights))
<tf.Tensor: shape=(1, 4), dtype=float32, numpy=
array([[-0.03897291, -0.27131438,  0.09332469,  0.04333957]],
      dtype=float32)>

Esempio di allenamento completo

Per mostrare un flusso di lavoro di formazione completo, preparare prima alcuni dati con tre funzionalità di diverso tipo:

features = {
    'type': [0, 1, 1],
    'size': ['small', 'small', 'medium'],
    'weight': [2.7, 1.8, 1.6],
}
labels = [1, 1, 0]
predict_features = {'type': [0], 'size': ['foo'], 'weight': [-0.7]}

Definire alcune costanti comuni per i flussi di lavoro TF1 e TF2:

vocab = ['small', 'medium', 'large']
one_hot_dims = 3
embedding_dims = 4
weight_mean = 2.0
weight_variance = 1.0

Con colonne caratteristiche

Le colonne delle funzioni devono essere passate come elenco allo stimatore al momento della creazione e verranno chiamate implicitamente durante l'addestramento.

categorical_col = tf1.feature_column.categorical_column_with_identity(
    'type', num_buckets=one_hot_dims)
# Convert index to one-hot; e.g. [2] -> [0,0,1].
indicator_col = tf1.feature_column.indicator_column(categorical_col)

# Convert strings to indices; e.g. ['small'] -> [1].
vocab_col = tf1.feature_column.categorical_column_with_vocabulary_list(
    'size', vocabulary_list=vocab, num_oov_buckets=1)
# Embed the indices.
embedding_col = tf1.feature_column.embedding_column(vocab_col, embedding_dims)

normalizer_fn = lambda x: (x - weight_mean) / math.sqrt(weight_variance)
# Normalize the numeric inputs; e.g. [2.0] -> [0.0].
numeric_col = tf1.feature_column.numeric_column(
    'weight', normalizer_fn=normalizer_fn)

estimator = tf1.estimator.DNNClassifier(
    feature_columns=[indicator_col, embedding_col, numeric_col],
    hidden_units=[1])

def _input_fn():
  return tf1.data.Dataset.from_tensor_slices((features, labels)).batch(1)

estimator.train(_input_fn)
INFO:tensorflow:Using default config.
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmp8lwbuor2
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmp8lwbuor2', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
INFO:tensorflow:Calling model_fn.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/adagrad.py:77: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmp8lwbuor2/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:loss = 0.54634213, step = 0
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 3...
INFO:tensorflow:Saving checkpoints for 3 into /tmp/tmp8lwbuor2/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 3...
INFO:tensorflow:Loss for final step: 0.7308526.
<tensorflow_estimator.python.estimator.canned.dnn.DNNClassifier at 0x7f90685d53d0>

Le colonne della funzionalità verranno utilizzate anche per trasformare i dati di input durante l'esecuzione dell'inferenza sul modello.

def _predict_fn():
  return tf1.data.Dataset.from_tensor_slices(predict_features).batch(1)

next(estimator.predict(_predict_fn))
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmp8lwbuor2/model.ckpt-3
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
{'logits': array([0.5172372], dtype=float32),
 'logistic': array([0.6265015], dtype=float32),
 'probabilities': array([0.37349847, 0.6265015 ], dtype=float32),
 'class_ids': array([1]),
 'classes': array([b'1'], dtype=object),
 'all_class_ids': array([0, 1], dtype=int32),
 'all_classes': array([b'0', b'1'], dtype=object)}

Con i livelli di pre-elaborazione Keras

I livelli di pre-elaborazione di Keras sono più flessibili nel punto in cui possono essere chiamati. Uno strato può essere applicato direttamente tensori, utilizzato all'interno di un tf.data tubazione di ingresso, o costruito direttamente in un modello Keras addestrabile.

In questo esempio, si applicherà pre-elaborazione strati all'interno di un tf.data tubazione di ingresso. Per fare questo, è possibile definire un separato tf.keras.Model pre-elaborare le vostre caratteristiche di ingresso. Questo modello non è addestrabile, ma è un modo conveniente per raggruppare i livelli di pre-elaborazione.

inputs = {
  'type': tf.keras.Input(shape=(), dtype='int64'),
  'size': tf.keras.Input(shape=(), dtype='string'),
  'weight': tf.keras.Input(shape=(), dtype='float32'),
}
# Convert index to one-hot; e.g. [2] -> [0,0,1].
type_output = tf.keras.layers.CategoryEncoding(
      one_hot_dims, output_mode='one_hot')(inputs['type'])
# Convert size strings to indices; e.g. ['small'] -> [1].
size_output = tf.keras.layers.StringLookup(vocabulary=vocab)(inputs['size'])
# Normalize the numeric inputs; e.g. [2.0] -> [0.0].
weight_output = tf.keras.layers.Normalization(
      axis=None, mean=weight_mean, variance=weight_variance)(inputs['weight'])
outputs = {
  'type': type_output,
  'size': size_output,
  'weight': weight_output,
}
preprocessing_model = tf.keras.Model(inputs, outputs)

A questo punto è possibile applicare questo modello all'interno di una chiamata a tf.data.Dataset.map . Si noti che la funzione passata a map verrà automaticamente convertito in un tf.function e avvertimenti usuali per la scrittura tf.function codice si applicano (senza effetti collaterali).

# Apply the preprocessing in tf.data.Dataset.map.
dataset = tf.data.Dataset.from_tensor_slices((features, labels)).batch(1)
dataset = dataset.map(lambda x, y: (preprocessing_model(x), y),
                      num_parallel_calls=tf.data.AUTOTUNE)
# Display a preprocessed input sample.
next(dataset.take(1).as_numpy_iterator())
({'type': array([[1., 0., 0.]], dtype=float32),
  'size': array([1]),
  'weight': array([0.70000005], dtype=float32)},
 array([1], dtype=int32))

Successivamente, è possibile definire un separato Model contenente gli strati addestrabili. Nota come gli input di questo modello ora riflettono i tipi e le forme di feature preelaborate.

inputs = {
  'type': tf.keras.Input(shape=(one_hot_dims,), dtype='float32'),
  'size': tf.keras.Input(shape=(), dtype='int64'),
  'weight': tf.keras.Input(shape=(), dtype='float32'),
}
# Since the embedding is trainable, it needs to be part of the training model.
embedding = tf.keras.layers.Embedding(len(vocab), embedding_dims)
outputs = tf.keras.layers.Concatenate()([
  inputs['type'],
  embedding(inputs['size']),
  tf.expand_dims(inputs['weight'], -1),
])
outputs = tf.keras.layers.Dense(1)(outputs)
training_model = tf.keras.Model(inputs, outputs)

Ora è possibile addestrare il training_model con tf.keras.Model.fit .

# Train on the preprocessed data.
training_model.compile(
    loss=tf.keras.losses.BinaryCrossentropy(from_logits=True))
training_model.fit(dataset)
3/3 [==============================] - 0s 3ms/step - loss: 0.7248
<keras.callbacks.History at 0x7f9041a294d0>

Infine, al momento dell'inferenza, può essere utile combinare queste fasi separate in un unico modello che gestisce gli input delle funzionalità non elaborate.

inputs = preprocessing_model.input
outpus = training_model(preprocessing_model(inputs))
inference_model = tf.keras.Model(inputs, outpus)

predict_dataset = tf.data.Dataset.from_tensor_slices(predict_features).batch(1)
inference_model.predict(predict_dataset)
array([[0.936637]], dtype=float32)

Questo modello composto può essere salvato come un SavedModel per un uso successivo.

inference_model.save('model')
restored_model = tf.keras.models.load_model('model')
restored_model.predict(predict_dataset)
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
2021-10-27 01:23:25.649967: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
INFO:tensorflow:Assets written to: model/assets
WARNING:tensorflow:No training configuration found in save file, so the model was *not* compiled. Compile it manually.
array([[0.936637]], dtype=float32)

Tabella di equivalenza colonna caratteristica

Per riferimento, ecco una corrispondenza approssimativa tra le colonne delle funzioni e i livelli di preelaborazione:

Colonna caratteristica Strato di Keras
feature_column.bucketized_column layers.Discretization
feature_column.categorical_column_with_hash_bucket layers.Hashing
feature_column.categorical_column_with_identity layers.CategoryEncoding
feature_column.categorical_column_with_vocabulary_file layers.StringLookup o layers.IntegerLookup
feature_column.categorical_column_with_vocabulary_list layers.StringLookup o layers.IntegerLookup
feature_column.crossed_column Non implementato.
feature_column.embedding_column layers.Embedding
feature_column.indicator_column output_mode='one_hot' o output_mode='multi_hot' *
feature_column.numeric_column layers.Normalization
feature_column.sequence_categorical_column_with_hash_bucket layers.Hashing
feature_column.sequence_categorical_column_with_identity layers.CategoryEncoding
feature_column.sequence_categorical_column_with_vocabulary_file layers.StringLookup , layers.IntegerLookup , o layer.TextVectorization
feature_column.sequence_categorical_column_with_vocabulary_list layers.StringLookup , layers.IntegerLookup , o layer.TextVectorization
feature_column.sequence_numeric_column layers.Normalization
feature_column.weighted_categorical_column layers.CategoryEncoding

* output_mode può essere passato a layers.CategoryEncoding , layers.StringLookup , layers.IntegerLookup e layers.TextVectorization .

layers.TextVectorization supporta il metodo di scrittura a mano libera direttamente (es intere frasi o paragrafi). Questa non è una sostituzione uno a uno per la gestione delle sequenze categoriche in TF1, ma può offrire un comodo sostituto per la preelaborazione del testo ad hoc.

Prossimi passi