Importowanie modeli opartych na TensorFlow GraphDef do TensorFlow.js

Zadbaj o dobrą organizację dzięki kolekcji Zapisuj i kategoryzuj treści zgodnie ze swoimi preferencjami.

Modele oparte na TensorFlow GraphDef (zwykle tworzone za pomocą API Pythona) można zapisać w jednym z następujących formatów:

  1. TensorFlow zapisany model
  2. Mrożony Model
  3. Moduł koncentratora Tensorflow

Wszystkie powyższe formaty można przekonwertować za pomocą konwertera TensorFlow.js na format, który można załadować bezpośrednio do TensorFlow.js w celu wnioskowania.

(Uwaga: TensorFlow wycofał format pakietu sesji, prosimy o migrację modeli do formatu SavedModel).

Wymagania

Procedura konwersji wymaga środowiska Python; możesz chcieć zachować izolację za pomocą pipenv lub virtualenv . Aby zainstalować konwerter, uruchom następujące polecenie:

 pip install tensorflowjs

Importowanie modelu TensorFlow do TensorFlow.js to proces dwuetapowy. Najpierw przekonwertuj istniejący model do formatu internetowego TensorFlow.js, a następnie załaduj go do TensorFlow.js.

Krok 1. Konwertuj istniejący model TensorFlow do formatu internetowego TensorFlow.js

Uruchom skrypt konwertera dostarczony przez pakiet pip:

Sposób użycia: Przykład SavedModel:

tensorflowjs_converter \
    --input_format=tf_saved_model \
    --output_node_names='MobilenetV1/Predictions/Reshape_1' \
    --saved_model_tags=serve \
    /mobilenet/saved_model \
    /mobilenet/web_model

Przykład modelu zamrożonego:

tensorflowjs_converter \
    --input_format=tf_frozen_model \
    --output_node_names='MobilenetV1/Predictions/Reshape_1' \
    /mobilenet/frozen_model.pb \
    /mobilenet/web_model

Przykład modułu Tensorflow Hub:

tensorflowjs_converter \
    --input_format=tf_hub \
    'https://tfhub.dev/google/imagenet/mobilenet_v1_100_224/classification/1' \
    /mobilenet/web_model
Argumenty pozycyjne Opis
input_path Pełna ścieżka zapisanego katalogu modelu, katalogu pakietu sesji, zamrożonego pliku modelu lub uchwytu lub ścieżki modułu TensorFlow Hub.
output_path Ścieżka dla wszystkich artefaktów wyjściowych.
Opcje Opis
--input_format Format modelu wejściowego, użyj tf_saved_model dla SavedModel, tf_frozen_model dla modelu zamrożonego, tf_session_bundle dla pakietu sesji, tf_hub dla modułu TensorFlow Hub i keras dla Keras HDF5.
--output_node_names Nazwy węzłów wyjściowych oddzielone przecinkami.
--saved_model_tags Dotyczy tylko konwersji SavedModel, tagów MetaGraphDef do załadowania, w formacie oddzielonym przecinkami. Wartości domyślne do serve .
--signature_name Dotyczy tylko konwersji modułu TensorFlow Hub, podpisu do załadowania. Domyślnie default . Zobacz https://www.tensorflow.org/hub/common_signatures/

Użyj następującego polecenia, aby uzyskać szczegółowy komunikat pomocy:

tensorflowjs_converter --help

Pliki wygenerowane przez konwerter

Powyższy skrypt konwersji tworzy dwa typy plików:

  • model.json (wykres przepływu danych i manifest wagi)
  • group1-shard\*of\* (kolekcja plików z wagami binarnymi)

Na przykład, oto wynik konwersji MobileNet v2:

  output_directory/model.json
  output_directory/group1-shard1of5
  ...
  output_directory/group1-shard5of5

Krok 2: Ładowanie i uruchamianie w przeglądarce

  1. Zainstaluj pakiet tfjs-converter npm

yarn add @tensorflow/tfjs lub npm install @tensorflow/tfjs

  1. Utwórz wystąpienie klasy FrozenModel i uruchom wnioskowanie.
import * as tf from '@tensorflow/tfjs';
import {loadGraphModel} from '@tensorflow/tfjs-converter';

const MODEL_URL = 'model_directory/model.json';

const model = await loadGraphModel(MODEL_URL);
const cat = document.getElementById('cat');
model.execute(tf.browser.fromPixels(cat));

Sprawdź nasze demo MobileNet .

Interfejs API loadGraphModel akceptuje dodatkowy parametr LoadOptions , którego można użyć do wysyłania poświadczeń lub niestandardowych nagłówków wraz z żądaniem. Więcej informacji można znaleźć w dokumentacji loadGraphModel() .

Obsługiwane operacje

Obecnie TensorFlow.js obsługuje ograniczony zestaw operacji TensorFlow. Jeśli twój model używa nieobsługiwanej operacji, skrypt tensorflowjs_converter zawiedzie i wydrukuje listę nieobsługiwanych operacji w twoim modelu. Zgłoś problem dla każdej operacji, aby poinformować nas, dla których operacji potrzebujesz wsparcia.

Ładowanie samych ciężarków

Jeśli wolisz załadować tylko wagi, możesz użyć poniższego fragmentu kodu.

import * as tf from '@tensorflow/tfjs';

const weightManifestUrl = "https://example.org/model/weights_manifest.json";

const manifest = await fetch(weightManifestUrl);
this.weightManifest = await manifest.json();
const weightMap = await tf.io.loadWeights(
        this.weightManifest, "https://example.org/model");