TFLレイヤーを使用したKerasモデルの作成

TensorFlow.orgで表示GoogleColabで実行GitHubでソースを表示 ノートブックをダウンロード

概要

TFL Kerasレイヤーを使用して、単調性やその他の形状制約を持つKerasモデルを構築できます。この例では、TFLレイヤーを使用して、UCI心臓データセットのキャリブレーションされた格子モデルを構築およびトレーニングします。

較正された格子モデルでは、各機能は、によって変換されtfl.layers.PWLCalibration又はtfl.layers.CategoricalCalibration層との結果が非線形用いて融合さtfl.layers.Lattice

設定

TF Latticeパッケージのインストール:

pip install -q tensorflow-lattice pydot

必要なパッケージのインポート:

import tensorflow as tf

import logging
import numpy as np
import pandas as pd
import sys
import tensorflow_lattice as tfl
from tensorflow import feature_column as fc
logging.disable(sys.maxsize)

UCI Statlog(Heart)データセットのダウンロード:

# UCI Statlog (Heart) dataset.
csv_file = tf.keras.utils.get_file(
    'heart.csv', 'http://storage.googleapis.com/download.tensorflow.org/data/heart.csv')
training_data_df = pd.read_csv(csv_file).sample(
    frac=1.0, random_state=41).reset_index(drop=True)
training_data_df.head()

このガイドのトレーニングに使用されるデフォルト値の設定:

LEARNING_RATE = 0.1
BATCH_SIZE = 128
NUM_EPOCHS = 100

シーケンシャルKerasモデル

この例では、Sequential Kerasモデルを作成し、TFLレイヤーのみを使用します。

格子層は、期待input[i]内であると[0, lattice_sizes[i] - 1.0]我々は適切に較正層の出力範囲を指定できるように、先に較正層の格子サイズを定義する必要があるので、。

# Lattice layer expects input[i] to be within [0, lattice_sizes[i] - 1.0], so
lattice_sizes = [3, 2, 2, 2, 2, 2, 2]

我々が使用tfl.layers.ParallelCombination逐次モデルを作成することを可能にするために並列に実行されなければならないグループ一緒に較正層の層。

combined_calibrators = tfl.layers.ParallelCombination()

フィーチャごとにキャリブレーションレイヤーを作成し、それを並列組み合わせレイヤーに追加します。我々が使用する数値の機能についてはtfl.layers.PWLCalibration 、そして私たちが使用するカテゴリ機能のtfl.layers.CategoricalCalibration

# ############### age ###############
calibrator = tfl.layers.PWLCalibration(
    # Every PWLCalibration layer must have keypoints of piecewise linear
    # function specified. Easiest way to specify them is to uniformly cover
    # entire input range by using numpy.linspace().
    input_keypoints=np.linspace(
        training_data_df['age'].min(), training_data_df['age'].max(), num=5),
    # You need to ensure that input keypoints have same dtype as layer input.
    # You can do it by setting dtype here or by providing keypoints in such
    # format which will be converted to desired tf.dtype by default.
    dtype=tf.float32,
    # Output range must correspond to expected lattice input range.
    output_min=0.0,
    output_max=lattice_sizes[0] - 1.0,
)
combined_calibrators.append(calibrator)

# ############### sex ###############
# For boolean features simply specify CategoricalCalibration layer with 2
# buckets.
calibrator = tfl.layers.CategoricalCalibration(
    num_buckets=2,
    output_min=0.0,
    output_max=lattice_sizes[1] - 1.0,
    # Initializes all outputs to (output_min + output_max) / 2.0.
    kernel_initializer='constant')
combined_calibrators.append(calibrator)

# ############### cp ###############
calibrator = tfl.layers.PWLCalibration(
    # Here instead of specifying dtype of layer we convert keypoints into
    # np.float32.
    input_keypoints=np.linspace(1, 4, num=4, dtype=np.float32),
    output_min=0.0,
    output_max=lattice_sizes[2] - 1.0,
    monotonicity='increasing',
    # You can specify TFL regularizers as a tuple ('regularizer name', l1, l2).
    kernel_regularizer=('hessian', 0.0, 1e-4))
combined_calibrators.append(calibrator)

# ############### trestbps ###############
calibrator = tfl.layers.PWLCalibration(
    # Alternatively, you might want to use quantiles as keypoints instead of
    # uniform keypoints
    input_keypoints=np.quantile(training_data_df['trestbps'],
                                np.linspace(0.0, 1.0, num=5)),
    dtype=tf.float32,
    # Together with quantile keypoints you might want to initialize piecewise
    # linear function to have 'equal_slopes' in order for output of layer
    # after initialization to preserve original distribution.
    kernel_initializer='equal_slopes',
    output_min=0.0,
    output_max=lattice_sizes[3] - 1.0,
    # You might consider clamping extreme inputs of the calibrator to output
    # bounds.
    clamp_min=True,
    clamp_max=True,
    monotonicity='increasing')
combined_calibrators.append(calibrator)

# ############### chol ###############
calibrator = tfl.layers.PWLCalibration(
    # Explicit input keypoint initialization.
    input_keypoints=[126.0, 210.0, 247.0, 286.0, 564.0],
    dtype=tf.float32,
    output_min=0.0,
    output_max=lattice_sizes[4] - 1.0,
    # Monotonicity of calibrator can be decreasing. Note that corresponding
    # lattice dimension must have INCREASING monotonicity regardless of
    # monotonicity direction of calibrator.
    monotonicity='decreasing',
    # Convexity together with decreasing monotonicity result in diminishing
    # return constraint.
    convexity='convex',
    # You can specify list of regularizers. You are not limited to TFL
    # regularizrs. Feel free to use any :)
    kernel_regularizer=[('laplacian', 0.0, 1e-4),
                        tf.keras.regularizers.l1_l2(l1=0.001)])
combined_calibrators.append(calibrator)

# ############### fbs ###############
calibrator = tfl.layers.CategoricalCalibration(
    num_buckets=2,
    output_min=0.0,
    output_max=lattice_sizes[5] - 1.0,
    # For categorical calibration layer monotonicity is specified for pairs
    # of indices of categories. Output for first category in pair will be
    # smaller than output for second category.
    #
    # Don't forget to set monotonicity of corresponding dimension of Lattice
    # layer to '1'.
    monotonicities=[(0, 1)],
    # This initializer is identical to default one('uniform'), but has fixed
    # seed in order to simplify experimentation.
    kernel_initializer=tf.keras.initializers.RandomUniform(
        minval=0.0, maxval=lattice_sizes[5] - 1.0, seed=1))
combined_calibrators.append(calibrator)

# ############### restecg ###############
calibrator = tfl.layers.CategoricalCalibration(
    num_buckets=3,
    output_min=0.0,
    output_max=lattice_sizes[6] - 1.0,
    # Categorical monotonicity can be partial order.
    monotonicities=[(0, 1), (0, 2)],
    # Categorical calibration layer supports standard Keras regularizers.
    kernel_regularizer=tf.keras.regularizers.l1_l2(l1=0.001),
    kernel_initializer='constant')
combined_calibrators.append(calibrator)

次に、ラティスレイヤーを作成して、キャリブレーターの出力を非線形に融合します。

必要な次元に対して増加する格子の単調性を指定する必要があることに注意してください。キャリブレーションでの単調性の方向との構成により、単調性の正しいエンドツーエンドの方向が得られます。これには、CategoricalCalibration層の部分的な単調性が含まれます。

lattice = tfl.layers.Lattice(
    lattice_sizes=lattice_sizes,
    monotonicities=[
        'increasing', 'none', 'increasing', 'increasing', 'increasing',
        'increasing', 'increasing'
    ],
    output_min=0.0,
    output_max=1.0)

次に、キャリブレータとラティスレイヤーを組み合わせて使用​​してシーケンシャルモデルを作成できます。

model = tf.keras.models.Sequential()
model.add(combined_calibrators)
model.add(lattice)

トレーニングは他のkerasモデルと同じように機能します。

features = training_data_df[[
    'age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg'
]].values.astype(np.float32)
target = training_data_df[['target']].values.astype(np.float32)

model.compile(
    loss=tf.keras.losses.mean_squared_error,
    optimizer=tf.keras.optimizers.Adagrad(learning_rate=LEARNING_RATE))
model.fit(
    features,
    target,
    batch_size=BATCH_SIZE,
    epochs=NUM_EPOCHS,
    validation_split=0.2,
    shuffle=False,
    verbose=0)

model.evaluate(features, target)
10/10 [==============================] - 0s 1ms/step - loss: 0.1551
0.15506614744663239

機能的なKerasモデル

この例では、Kerasモデルの構築に機能APIを使用しています。

前節で述べたように、格子層は予想input[i]内にあるように[0, lattice_sizes[i] - 1.0]我々は正しくの出力範囲を指定できるように、先に較正層の格子サイズを定義する必要があるので、キャリブレーションレイヤー。

# We are going to have 2-d embedding as one of lattice inputs.
lattice_sizes = [3, 2, 2, 3, 3, 2, 2]

機能ごとに、入力レイヤーを作成してから、キャリブレーションレイヤーを作成する必要があります。数値の機能については、我々が使用tfl.layers.PWLCalibrationし、私たちが使用するカテゴリ機能のtfl.layers.CategoricalCalibration

model_inputs = []
lattice_inputs = []
# ############### age ###############
age_input = tf.keras.layers.Input(shape=[1], name='age')
model_inputs.append(age_input)
age_calibrator = tfl.layers.PWLCalibration(
    # Every PWLCalibration layer must have keypoints of piecewise linear
    # function specified. Easiest way to specify them is to uniformly cover
    # entire input range by using numpy.linspace().
    input_keypoints=np.linspace(
        training_data_df['age'].min(), training_data_df['age'].max(), num=5),
    # You need to ensure that input keypoints have same dtype as layer input.
    # You can do it by setting dtype here or by providing keypoints in such
    # format which will be converted to desired tf.dtype by default.
    dtype=tf.float32,
    # Output range must correspond to expected lattice input range.
    output_min=0.0,
    output_max=lattice_sizes[0] - 1.0,
    monotonicity='increasing',
    name='age_calib',
)(
    age_input)
lattice_inputs.append(age_calibrator)

# ############### sex ###############
# For boolean features simply specify CategoricalCalibration layer with 2
# buckets.
sex_input = tf.keras.layers.Input(shape=[1], name='sex')
model_inputs.append(sex_input)
sex_calibrator = tfl.layers.CategoricalCalibration(
    num_buckets=2,
    output_min=0.0,
    output_max=lattice_sizes[1] - 1.0,
    # Initializes all outputs to (output_min + output_max) / 2.0.
    kernel_initializer='constant',
    name='sex_calib',
)(
    sex_input)
lattice_inputs.append(sex_calibrator)

# ############### cp ###############
cp_input = tf.keras.layers.Input(shape=[1], name='cp')
model_inputs.append(cp_input)
cp_calibrator = tfl.layers.PWLCalibration(
    # Here instead of specifying dtype of layer we convert keypoints into
    # np.float32.
    input_keypoints=np.linspace(1, 4, num=4, dtype=np.float32),
    output_min=0.0,
    output_max=lattice_sizes[2] - 1.0,
    monotonicity='increasing',
    # You can specify TFL regularizers as tuple ('regularizer name', l1, l2).
    kernel_regularizer=('hessian', 0.0, 1e-4),
    name='cp_calib',
)(
    cp_input)
lattice_inputs.append(cp_calibrator)

# ############### trestbps ###############
trestbps_input = tf.keras.layers.Input(shape=[1], name='trestbps')
model_inputs.append(trestbps_input)
trestbps_calibrator = tfl.layers.PWLCalibration(
    # Alternatively, you might want to use quantiles as keypoints instead of
    # uniform keypoints
    input_keypoints=np.quantile(training_data_df['trestbps'],
                                np.linspace(0.0, 1.0, num=5)),
    dtype=tf.float32,
    # Together with quantile keypoints you might want to initialize piecewise
    # linear function to have 'equal_slopes' in order for output of layer
    # after initialization to preserve original distribution.
    kernel_initializer='equal_slopes',
    output_min=0.0,
    output_max=lattice_sizes[3] - 1.0,
    # You might consider clamping extreme inputs of the calibrator to output
    # bounds.
    clamp_min=True,
    clamp_max=True,
    monotonicity='increasing',
    name='trestbps_calib',
)(
    trestbps_input)
lattice_inputs.append(trestbps_calibrator)

# ############### chol ###############
chol_input = tf.keras.layers.Input(shape=[1], name='chol')
model_inputs.append(chol_input)
chol_calibrator = tfl.layers.PWLCalibration(
    # Explicit input keypoint initialization.
    input_keypoints=[126.0, 210.0, 247.0, 286.0, 564.0],
    output_min=0.0,
    output_max=lattice_sizes[4] - 1.0,
    # Monotonicity of calibrator can be decreasing. Note that corresponding
    # lattice dimension must have INCREASING monotonicity regardless of
    # monotonicity direction of calibrator.
    monotonicity='decreasing',
    # Convexity together with decreasing monotonicity result in diminishing
    # return constraint.
    convexity='convex',
    # You can specify list of regularizers. You are not limited to TFL
    # regularizrs. Feel free to use any :)
    kernel_regularizer=[('laplacian', 0.0, 1e-4),
                        tf.keras.regularizers.l1_l2(l1=0.001)],
    name='chol_calib',
)(
    chol_input)
lattice_inputs.append(chol_calibrator)

# ############### fbs ###############
fbs_input = tf.keras.layers.Input(shape=[1], name='fbs')
model_inputs.append(fbs_input)
fbs_calibrator = tfl.layers.CategoricalCalibration(
    num_buckets=2,
    output_min=0.0,
    output_max=lattice_sizes[5] - 1.0,
    # For categorical calibration layer monotonicity is specified for pairs
    # of indices of categories. Output for first category in pair will be
    # smaller than output for second category.
    #
    # Don't forget to set monotonicity of corresponding dimension of Lattice
    # layer to '1'.
    monotonicities=[(0, 1)],
    # This initializer is identical to default one ('uniform'), but has fixed
    # seed in order to simplify experimentation.
    kernel_initializer=tf.keras.initializers.RandomUniform(
        minval=0.0, maxval=lattice_sizes[5] - 1.0, seed=1),
    name='fbs_calib',
)(
    fbs_input)
lattice_inputs.append(fbs_calibrator)

# ############### restecg ###############
restecg_input = tf.keras.layers.Input(shape=[1], name='restecg')
model_inputs.append(restecg_input)
restecg_calibrator = tfl.layers.CategoricalCalibration(
    num_buckets=3,
    output_min=0.0,
    output_max=lattice_sizes[6] - 1.0,
    # Categorical monotonicity can be partial order.
    monotonicities=[(0, 1), (0, 2)],
    # Categorical calibration layer supports standard Keras regularizers.
    kernel_regularizer=tf.keras.regularizers.l1_l2(l1=0.001),
    kernel_initializer='constant',
    name='restecg_calib',
)(
    restecg_input)
lattice_inputs.append(restecg_calibrator)

次に、ラティスレイヤーを作成して、キャリブレーターの出力を非線形に融合します。

必要な次元に対して増加する格子の単調性を指定する必要があることに注意してください。キャリブレーションでの単調性の方向との構成により、単調性の正しいエンドツーエンドの方向が得られます。これは、部分的単調含まtfl.layers.CategoricalCalibration層を。

lattice = tfl.layers.Lattice(
    lattice_sizes=lattice_sizes,
    monotonicities=[
        'increasing', 'none', 'increasing', 'increasing', 'increasing',
        'increasing', 'increasing'
    ],
    output_min=0.0,
    output_max=1.0,
    name='lattice',
)(
    lattice_inputs)

モデルに柔軟性を追加するために、出力キャリブレーションレイヤーを追加します。

model_output = tfl.layers.PWLCalibration(
    input_keypoints=np.linspace(0.0, 1.0, 5),
    name='output_calib',
)(
    lattice)

これで、入力と出力を使用してモデルを作成できます。

model = tf.keras.models.Model(
    inputs=model_inputs,
    outputs=model_output)
tf.keras.utils.plot_model(model, rankdir='LR')

png

トレーニングは他のkerasモデルと同じように機能します。この設定では、入力フィーチャは個別のテンソルとして渡されることに注意してください。

feature_names = ['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg']
features = np.split(
    training_data_df[feature_names].values.astype(np.float32),
    indices_or_sections=len(feature_names),
    axis=1)
target = training_data_df[['target']].values.astype(np.float32)

model.compile(
    loss=tf.keras.losses.mean_squared_error,
    optimizer=tf.keras.optimizers.Adagrad(LEARNING_RATE))
model.fit(
    features,
    target,
    batch_size=BATCH_SIZE,
    epochs=NUM_EPOCHS,
    validation_split=0.2,
    shuffle=False,
    verbose=0)

model.evaluate(features, target)
10/10 [==============================] - 0s 1ms/step - loss: 0.1590
0.15900751948356628