Weź udział w sympozjum Women in ML 7 grudnia Zarejestruj się teraz

Zintegruj segmentatory obrazu

Zadbaj o dobrą organizację dzięki kolekcji Zapisuj i kategoryzuj treści zgodnie ze swoimi preferencjami.

Moduły segmentacji obrazu przewidują, czy każdy piksel obrazu jest powiązany z określoną klasą. Jest to przeciwieństwo wykrywania obiektów , które wykrywa obiekty w prostokątnych obszarach, oraz klasyfikacji obrazu , która klasyfikuje cały obraz. Zobacz przegląd segmentacji obrazów , aby uzyskać więcej informacji o segmentatorach obrazów.

Użyj interfejsu API biblioteki zadań ImageSegmenter , aby wdrożyć niestandardowe lub przeszkolone segmentatory obrazów w swoich aplikacjach mobilnych.

Kluczowe cechy interfejsu ImageSegmenter API

  • Przetwarzanie obrazu wejściowego, w tym obracanie, zmiana rozmiaru i konwersja przestrzeni kolorów.

  • Lokalizacja mapy etykiety.

  • Dwa typy danych wyjściowych, maska ​​kategorii i maski zaufania.

  • Kolorowa etykieta do celów ekspozycyjnych.

Obsługiwane modele segmentacji obrazu

Gwarantujemy zgodność następujących modeli z interfejsem ImageSegmenter API.

Uruchom wnioskowanie w Javie

Zobacz aplikację referencyjną segmentacji obrazów, aby zapoznać się z przykładem korzystania z ImageSegmenter w aplikacji na Androida.

Krok 1: Importuj zależność Gradle i inne ustawienia

Skopiuj plik modelu .tflite do katalogu asset modułu Android, w którym będzie uruchamiany model. Określ, że plik nie powinien być skompresowany, i dodaj bibliotekę TensorFlow Lite do pliku build.gradle modułu:

android {
    // Other settings

    // Specify tflite file should not be compressed for the app apk
    aaptOptions {
        noCompress "tflite"
    }
}

dependencies {
    // Other dependencies

    // Import the Task Vision Library dependency (NNAPI is included)
    implementation 'org.tensorflow:tensorflow-lite-task-vision'
    // Import the GPU delegate plugin Library for GPU inference
    implementation 'org.tensorflow:tensorflow-lite-gpu-delegate-plugin'
}

Krok 2: Korzystanie z modelu

// Initialization
ImageSegmenterOptions options =
    ImageSegmenterOptions.builder()
        .setBaseOptions(BaseOptions.builder().useGpu().build())
        .setOutputType(OutputType.CONFIDENCE_MASK)
        .build();
ImageSegmenter imageSegmenter =
    ImageSegmenter.createFromFileAndOptions(context, modelFile, options);

// Run inference
List<Segmentation> results = imageSegmenter.segment(image);

Zobacz kod źródłowy i javadoc, aby uzyskać więcej opcji konfiguracji ImageSegmenter .

Uruchom wnioskowanie w iOS

Krok 1: Zainstaluj zależności

Biblioteka zadań obsługuje instalację za pomocą CocoaPods. Upewnij się, że CocoaPods jest zainstalowany w twoim systemie. Zapoznaj się z instrukcją instalacji CocoaPods, aby uzyskać instrukcje.

Zapoznaj się z przewodnikiem CocoaPods, aby uzyskać szczegółowe informacje na temat dodawania podów do projektu Xcode.

Dodaj TensorFlowLiteTaskVision w pliku Podfile.

target 'MyAppWithTaskAPI' do
  use_frameworks!
  pod 'TensorFlowLiteTaskVision'
end

Upewnij się, że model .tflite , którego będziesz używać do wnioskowania, znajduje się w pakiecie aplikacji.

Krok 2: Korzystanie z modelu

Szybki

// Imports
import TensorFlowLiteTaskVision

// Initialization
guard let modelPath = Bundle.main.path(forResource: "deeplabv3",
                                            ofType: "tflite") else { return }

let options = ImageSegmenterOptions(modelPath: modelPath)

// Configure any additional options:
// options.outputType = OutputType.confidenceMasks

let segmenter = try ImageSegmenter.segmenter(options: options)

// Convert the input image to MLImage.
// There are other sources for MLImage. For more details, please see:
// https://developers.google.com/ml-kit/reference/ios/mlimage/api/reference/Classes/GMLImage
guard let image = UIImage (named: "plane.jpg"), let mlImage = MLImage(image: image) else { return }

// Run inference
let segmentationResult = try segmenter.segment(mlImage: mlImage)

Cel C

// Imports
#import <TensorFlowLiteTaskVision/TensorFlowLiteTaskVision.h>

// Initialization
NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"deeplabv3" ofType:@"tflite"];

TFLImageSegmenterOptions *options =
    [[TFLImageSegmenterOptions alloc] initWithModelPath:modelPath];

// Configure any additional options:
// options.outputType = TFLOutputTypeConfidenceMasks;

TFLImageSegmenter *segmenter = [TFLImageSegmenter imageSegmenterWithOptions:options
                                                                      error:nil];

// Convert the input image to MLImage.
UIImage *image = [UIImage imageNamed:@"plane.jpg"];

// There are other sources for GMLImage. For more details, please see:
// https://developers.google.com/ml-kit/reference/ios/mlimage/api/reference/Classes/GMLImage
GMLImage *gmlImage = [[GMLImage alloc] initWithImage:image];

// Run inference
TFLSegmentationResult *segmentationResult =
    [segmenter segmentWithGMLImage:gmlImage error:nil];

Zobacz kod źródłowy, aby uzyskać więcej opcji konfigurowania TFLImageSegmenter .

Uruchom wnioskowanie w Pythonie

Krok 1: Zainstaluj pakiet pip

pip install tflite-support

Krok 2: Korzystanie z modelu

# Imports
from tflite_support.task import vision
from tflite_support.task import core
from tflite_support.task import processor

# Initialization
base_options = core.BaseOptions(file_name=model_path)
segmentation_options = processor.SegmentationOptions(
    output_type=processor.SegmentationOptions.OutputType.CATEGORY_MASK)
options = vision.ImageSegmenterOptions(base_options=base_options, segmentation_options=segmentation_options)
segmenter = vision.ImageSegmenter.create_from_options(options)

# Alternatively, you can create an image segmenter in the following manner:
# segmenter = vision.ImageSegmenter.create_from_file(model_path)

# Run inference
image_file = vision.TensorImage.create_from_file(image_path)
segmentation_result = segmenter.segment(image_file)

Zobacz kod źródłowy, aby uzyskać więcej opcji konfiguracji ImageSegmenter .

Uruchom wnioskowanie w C++

// Initialization
ImageSegmenterOptions options;
options.mutable_base_options()->mutable_model_file()->set_file_name(model_path);
std::unique_ptr<ImageSegmenter> image_segmenter = ImageSegmenter::CreateFromOptions(options).value();

// Create input frame_buffer from your inputs, `image_data` and `image_dimension`.
// See more information here: tensorflow_lite_support/cc/task/vision/utils/frame_buffer_common_utils.h
std::unique_ptr<FrameBuffer> frame_buffer = CreateFromRgbRawBuffer(
      image_data, image_dimension);

// Run inference
const SegmentationResult result = image_segmenter->Segment(*frame_buffer).value();

Zobacz kod źródłowy, aby uzyskać więcej opcji konfiguracji ImageSegmenter .

Przykładowe wyniki

Oto przykład wyników segmentacji deeplab_v3 , ogólnego modelu segmentacji dostępnego w TensorFlow Hub.

samolot

Color Legend:
 (r: 000, g: 000, b: 000):
  index       : 0
  class name  : background
 (r: 128, g: 000, b: 000):
  index       : 1
  class name  : aeroplane

# (omitting multiple lines for conciseness) ...

 (r: 128, g: 192, b: 000):
  index       : 19
  class name  : train
 (r: 000, g: 064, b: 128):
  index       : 20
  class name  : tv
Tip: use a color picker on the output PNG file to inspect the output mask with
this legend.

Maska kategorii segmentacji powinna wyglądać tak:

segmentacja-wyjście

Wypróbuj proste narzędzie demonstracyjne CLI dla ImageSegmenter z własnym modelem i danymi testowymi.

Wymagania dotyczące zgodności modelu

Interfejs API ImageSegmenter oczekuje modelu TFLite z obowiązkowymi metadanymi modelu TFLite . Zobacz przykłady tworzenia metadanych dla segmentatorów obrazów przy użyciu interfejsu API TensorFlow Lite Metadata Writer .

  • Tensor obrazu wejściowego (kTfLiteUInt8/kTfLiteFloat32)

    • wejście obrazu o rozmiarze [batch x height x width x channels] .
    • wnioskowanie o partiach nie jest obsługiwane ( batch musi wynosić 1).
    • obsługiwane są tylko wejścia RGB (wymagane jest 3 channels ).
    • jeśli typem jest kTfLiteFloat32, NormalizationOptions muszą być dołączone do metadanych w celu normalizacji danych wejściowych.
  • Tensor masek wyjściowych: (kTfLiteUInt8/kTfLiteFloat32)

    • tensor o rozmiarze [batch x mask_height x mask_width x num_classes] , gdzie batch ma wynosić 1, mask_width i mask_height to wymiary masek segmentacji produkowanych przez model, a num_classes to liczba klas obsługiwanych przez model.
    • opcjonalne (ale zalecane) mapy etykiet mogą być dołączone jako AssociatedFile-s z typem TENSOR_AXIS_LABELS, zawierającym jedną etykietę w wierszu. Pierwszy taki AssociatedFile (jeśli istnieje) jest używany do wypełnienia pola label (o nazwie class_name w C++) wyników. Pole display_name jest wypełniane z pliku AssociatedFile (jeśli istnieje), którego ustawienia regionalne są zgodne z polem display_names_locale opcji ImageSegmenterOptions używanej w czasie tworzenia (domyślnie „en”, tj. angielski). Jeśli żaden z nich nie jest dostępny, wypełnione zostanie tylko pole index wyników.