Partecipa al simposio Women in ML il 7 dicembre Registrati ora

Raccomandatori multi-task

Mantieni tutto organizzato con le raccolte Salva e classifica i contenuti in base alle tue preferenze.

Visualizza su TensorFlow.org Esegui in Google Colab Visualizza la fonte su GitHub Scarica taccuino

Nel tutorial di recupero di base abbiamo costruito un sistema di recupero con gli orologi di film come segnali di positiva interazione.

In molte applicazioni, tuttavia, esistono numerose e ricche fonti di feedback a cui attingere. Ad esempio, un sito di e-commerce può registrare le visite degli utenti alle pagine dei prodotti (abbondanti, ma con segnale relativamente basso), i clic sulle immagini, l'aggiunta al carrello e, infine, gli acquisti. Può persino registrare segnali post-acquisto come recensioni e resi.

L'integrazione di tutte queste diverse forme di feedback è fondamentale per creare sistemi che gli utenti amano utilizzare e che non ottimizzano per nessuna metrica a scapito delle prestazioni complessive.

Inoltre, la creazione di un modello congiunto per più attività può produrre risultati migliori rispetto alla creazione di una serie di modelli specifici per attività. Ciò è particolarmente vero dove alcuni dati sono abbondanti (ad esempio, clic) e alcuni dati sono scarsi (acquisti, resi, revisioni manuali). In questi scenari, un modello comune può essere in grado di utilizzare le rappresentazioni apprese dal compito abbondante per migliorare le sue previsioni sul compito sparse attraverso un fenomeno noto come apprendimento di trasferimento . Ad esempio, questa carta mostra che un modello predire user ratings esplicite indagini degli utenti radi può essere notevolmente migliorata aggiungendo un task ausiliario che utilizza i dati di log click abbondanti.

In questo tutorial, costruiremo un suggeritore multi-obiettivo per Movielens, utilizzando sia segnali impliciti (guardie di film) che espliciti (valutazioni).

Importazioni

Per prima cosa togliamo di mezzo le nostre importazioni.

pip install -q tensorflow-recommenders
pip install -q --upgrade tensorflow-datasets
import os
import pprint
import tempfile

from typing import Dict, Text

import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
import tensorflow_recommenders as tfrs

Preparazione del set di dati

Useremo il set di dati Movielens 100K.

ratings = tfds.load('movielens/100k-ratings', split="train")
movies = tfds.load('movielens/100k-movies', split="train")

# Select the basic features.
ratings = ratings.map(lambda x: {
    "movie_title": x["movie_title"],
    "user_id": x["user_id"],
    "user_rating": x["user_rating"],
})
movies = movies.map(lambda x: x["movie_title"])

E ripeti i nostri preparativi per la creazione di vocabolari e la suddivisione dei dati in un treno e un set di prova:

# Randomly shuffle data and split between train and test.
tf.random.set_seed(42)
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)

train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)

movie_titles = movies.batch(1_000)
user_ids = ratings.batch(1_000_000).map(lambda x: x["user_id"])

unique_movie_titles = np.unique(np.concatenate(list(movie_titles)))
unique_user_ids = np.unique(np.concatenate(list(user_ids)))

Un modello multi-task

Ci sono due parti critiche per i consiglieri multi-task:

  1. Si ottimizzano per due o più obiettivi e quindi hanno due o più perdite.
  2. Condividono le variabili tra le attività, consentendo il trasferimento dell'apprendimento.

In questo tutorial, definiremo i nostri modelli come prima, ma invece di avere un'unica attività, avremo due attività: una che prevede le valutazioni e una che prevede le visualizzazioni dei film.

I modelli utente e film sono come prima:

user_model = tf.keras.Sequential([
  tf.keras.layers.StringLookup(
      vocabulary=unique_user_ids, mask_token=None),
  # We add 1 to account for the unknown token.
  tf.keras.layers.Embedding(len(unique_user_ids) + 1, embedding_dimension)
])

movie_model = tf.keras.Sequential([
  tf.keras.layers.StringLookup(
      vocabulary=unique_movie_titles, mask_token=None),
  tf.keras.layers.Embedding(len(unique_movie_titles) + 1, embedding_dimension)
])

Tuttavia, ora avremo due compiti. Il primo è il compito di valutazione:

tfrs.tasks.Ranking(
    loss=tf.keras.losses.MeanSquaredError(),
    metrics=[tf.keras.metrics.RootMeanSquaredError()],
)

Il suo obiettivo è prevedere le valutazioni nel modo più accurato possibile.

Il secondo è il compito di recupero:

tfrs.tasks.Retrieval(
    metrics=tfrs.metrics.FactorizedTopK(
        candidates=movies.batch(128)
    )
)

Come in precedenza, l'obiettivo di questa attività è prevedere quali film l'utente guarderà o meno.

Mettendolo insieme

Mettiamo tutto insieme in una classe modello.

La nuova componente qui è che, poiché abbiamo due compiti e due perdite, dobbiamo decidere quanto sia importante ciascuna perdita. Possiamo farlo assegnando un peso a ciascuna delle perdite e trattando questi pesi come iperparametri. Se assegniamo un peso di perdita elevato all'attività di valutazione, il nostro modello si concentrerà sulla previsione delle valutazioni (ma utilizzerà ancora alcune informazioni dall'attività di recupero); se assegniamo una grande perdita di peso all'attività di recupero, si concentrerà invece sul recupero.

class MovielensModel(tfrs.models.Model):

  def __init__(self, rating_weight: float, retrieval_weight: float) -> None:
    # We take the loss weights in the constructor: this allows us to instantiate
    # several model objects with different loss weights.

    super().__init__()

    embedding_dimension = 32

    # User and movie models.
    self.movie_model: tf.keras.layers.Layer = tf.keras.Sequential([
      tf.keras.layers.StringLookup(
        vocabulary=unique_movie_titles, mask_token=None),
      tf.keras.layers.Embedding(len(unique_movie_titles) + 1, embedding_dimension)
    ])
    self.user_model: tf.keras.layers.Layer = tf.keras.Sequential([
      tf.keras.layers.StringLookup(
        vocabulary=unique_user_ids, mask_token=None),
      tf.keras.layers.Embedding(len(unique_user_ids) + 1, embedding_dimension)
    ])

    # A small model to take in user and movie embeddings and predict ratings.
    # We can make this as complicated as we want as long as we output a scalar
    # as our prediction.
    self.rating_model = tf.keras.Sequential([
        tf.keras.layers.Dense(256, activation="relu"),
        tf.keras.layers.Dense(128, activation="relu"),
        tf.keras.layers.Dense(1),
    ])

    # The tasks.
    self.rating_task: tf.keras.layers.Layer = tfrs.tasks.Ranking(
        loss=tf.keras.losses.MeanSquaredError(),
        metrics=[tf.keras.metrics.RootMeanSquaredError()],
    )
    self.retrieval_task: tf.keras.layers.Layer = tfrs.tasks.Retrieval(
        metrics=tfrs.metrics.FactorizedTopK(
            candidates=movies.batch(128).map(self.movie_model)
        )
    )

    # The loss weights.
    self.rating_weight = rating_weight
    self.retrieval_weight = retrieval_weight

  def call(self, features: Dict[Text, tf.Tensor]) -> tf.Tensor:
    # We pick out the user features and pass them into the user model.
    user_embeddings = self.user_model(features["user_id"])
    # And pick out the movie features and pass them into the movie model.
    movie_embeddings = self.movie_model(features["movie_title"])

    return (
        user_embeddings,
        movie_embeddings,
        # We apply the multi-layered rating model to a concatentation of
        # user and movie embeddings.
        self.rating_model(
            tf.concat([user_embeddings, movie_embeddings], axis=1)
        ),
    )

  def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor:

    ratings = features.pop("user_rating")

    user_embeddings, movie_embeddings, rating_predictions = self(features)

    # We compute the loss for each task.
    rating_loss = self.rating_task(
        labels=ratings,
        predictions=rating_predictions,
    )
    retrieval_loss = self.retrieval_task(user_embeddings, movie_embeddings)

    # And combine them using the loss weights.
    return (self.rating_weight * rating_loss
            + self.retrieval_weight * retrieval_loss)

Modello specializzato in valutazione

A seconda dei pesi che assegniamo, il modello codificherà un diverso bilanciamento dei compiti. Cominciamo con un modello che considera solo le valutazioni.

model = MovielensModel(rating_weight=1.0, retrieval_weight=0.0)
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1))
cached_train = train.shuffle(100_000).batch(8192).cache()
cached_test = test.batch(4096).cache()
model.fit(cached_train, epochs=3)
metrics = model.evaluate(cached_test, return_dict=True)

print(f"Retrieval top-100 accuracy: {metrics['factorized_top_k/top_100_categorical_accuracy']:.3f}.")
print(f"Ranking RMSE: {metrics['root_mean_squared_error']:.3f}.")
Epoch 1/3
10/10 [==============================] - 7s 331ms/step - root_mean_squared_error: 2.0903 - factorized_top_k/top_1_categorical_accuracy: 2.7500e-04 - factorized_top_k/top_5_categorical_accuracy: 0.0024 - factorized_top_k/top_10_categorical_accuracy: 0.0054 - factorized_top_k/top_50_categorical_accuracy: 0.0294 - factorized_top_k/top_100_categorical_accuracy: 0.0589 - loss: 4.0315 - regularization_loss: 0.0000e+00 - total_loss: 4.0315
Epoch 2/3
10/10 [==============================] - 3s 321ms/step - root_mean_squared_error: 1.1531 - factorized_top_k/top_1_categorical_accuracy: 1.8750e-04 - factorized_top_k/top_5_categorical_accuracy: 0.0024 - factorized_top_k/top_10_categorical_accuracy: 0.0054 - factorized_top_k/top_50_categorical_accuracy: 0.0297 - factorized_top_k/top_100_categorical_accuracy: 0.0591 - loss: 1.3189 - regularization_loss: 0.0000e+00 - total_loss: 1.3189
Epoch 3/3
10/10 [==============================] - 3s 316ms/step - root_mean_squared_error: 1.1198 - factorized_top_k/top_1_categorical_accuracy: 1.6250e-04 - factorized_top_k/top_5_categorical_accuracy: 0.0025 - factorized_top_k/top_10_categorical_accuracy: 0.0055 - factorized_top_k/top_50_categorical_accuracy: 0.0300 - factorized_top_k/top_100_categorical_accuracy: 0.0597 - loss: 1.2479 - regularization_loss: 0.0000e+00 - total_loss: 1.2479
5/5 [==============================] - 3s 194ms/step - root_mean_squared_error: 1.1130 - factorized_top_k/top_1_categorical_accuracy: 4.5000e-04 - factorized_top_k/top_5_categorical_accuracy: 0.0028 - factorized_top_k/top_10_categorical_accuracy: 0.0052 - factorized_top_k/top_50_categorical_accuracy: 0.0295 - factorized_top_k/top_100_categorical_accuracy: 0.0597 - loss: 1.2336 - regularization_loss: 0.0000e+00 - total_loss: 1.2336
Retrieval top-100 accuracy: 0.060.
Ranking RMSE: 1.113.

Il modello funziona bene nella previsione delle valutazioni (con un RMSE di circa 1,11), ma si comporta male nel prevedere quali film verranno guardati o meno: la sua precisione a 100 è quasi 4 volte peggiore di un modello addestrato esclusivamente per prevedere gli orologi.

Modello specializzato nel recupero

Proviamo ora un modello che si concentra solo sul recupero.

model = MovielensModel(rating_weight=0.0, retrieval_weight=1.0)
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1))
model.fit(cached_train, epochs=3)
metrics = model.evaluate(cached_test, return_dict=True)

print(f"Retrieval top-100 accuracy: {metrics['factorized_top_k/top_100_categorical_accuracy']:.3f}.")
print(f"Ranking RMSE: {metrics['root_mean_squared_error']:.3f}.")
Epoch 1/3
10/10 [==============================] - 4s 313ms/step - root_mean_squared_error: 3.7238 - factorized_top_k/top_1_categorical_accuracy: 7.5000e-05 - factorized_top_k/top_5_categorical_accuracy: 0.0014 - factorized_top_k/top_10_categorical_accuracy: 0.0041 - factorized_top_k/top_50_categorical_accuracy: 0.0473 - factorized_top_k/top_100_categorical_accuracy: 0.1135 - loss: 69818.0298 - regularization_loss: 0.0000e+00 - total_loss: 69818.0298
Epoch 2/3
10/10 [==============================] - 3s 326ms/step - root_mean_squared_error: 3.7495 - factorized_top_k/top_1_categorical_accuracy: 0.0011 - factorized_top_k/top_5_categorical_accuracy: 0.0116 - factorized_top_k/top_10_categorical_accuracy: 0.0268 - factorized_top_k/top_50_categorical_accuracy: 0.1425 - factorized_top_k/top_100_categorical_accuracy: 0.2658 - loss: 67473.2884 - regularization_loss: 0.0000e+00 - total_loss: 67473.2884
Epoch 3/3
10/10 [==============================] - 3s 314ms/step - root_mean_squared_error: 3.7648 - factorized_top_k/top_1_categorical_accuracy: 0.0014 - factorized_top_k/top_5_categorical_accuracy: 0.0180 - factorized_top_k/top_10_categorical_accuracy: 0.0388 - factorized_top_k/top_50_categorical_accuracy: 0.1773 - factorized_top_k/top_100_categorical_accuracy: 0.3050 - loss: 66329.2543 - regularization_loss: 0.0000e+00 - total_loss: 66329.2543
5/5 [==============================] - 1s 193ms/step - root_mean_squared_error: 3.7730 - factorized_top_k/top_1_categorical_accuracy: 0.0012 - factorized_top_k/top_5_categorical_accuracy: 0.0097 - factorized_top_k/top_10_categorical_accuracy: 0.0218 - factorized_top_k/top_50_categorical_accuracy: 0.1253 - factorized_top_k/top_100_categorical_accuracy: 0.2352 - loss: 31085.0697 - regularization_loss: 0.0000e+00 - total_loss: 31085.0697
Retrieval top-100 accuracy: 0.235.
Ranking RMSE: 3.773.

Otteniamo il risultato opposto: un modello che funziona bene nel recupero, ma male nel prevedere le valutazioni.

Modello comune

Addestriamo ora un modello che assegna pesi positivi a entrambe le attività.

model = MovielensModel(rating_weight=1.0, retrieval_weight=1.0)
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1))
model.fit(cached_train, epochs=3)
metrics = model.evaluate(cached_test, return_dict=True)

print(f"Retrieval top-100 accuracy: {metrics['factorized_top_k/top_100_categorical_accuracy']:.3f}.")
print(f"Ranking RMSE: {metrics['root_mean_squared_error']:.3f}.")
Epoch 1/3
10/10 [==============================] - 4s 299ms/step - root_mean_squared_error: 2.5007 - factorized_top_k/top_1_categorical_accuracy: 3.7500e-05 - factorized_top_k/top_5_categorical_accuracy: 0.0014 - factorized_top_k/top_10_categorical_accuracy: 0.0043 - factorized_top_k/top_50_categorical_accuracy: 0.0450 - factorized_top_k/top_100_categorical_accuracy: 0.1102 - loss: 69811.8274 - regularization_loss: 0.0000e+00 - total_loss: 69811.8274
Epoch 2/3
10/10 [==============================] - 3s 312ms/step - root_mean_squared_error: 1.2097 - factorized_top_k/top_1_categorical_accuracy: 9.8750e-04 - factorized_top_k/top_5_categorical_accuracy: 0.0110 - factorized_top_k/top_10_categorical_accuracy: 0.0255 - factorized_top_k/top_50_categorical_accuracy: 0.1385 - factorized_top_k/top_100_categorical_accuracy: 0.2605 - loss: 67481.2713 - regularization_loss: 0.0000e+00 - total_loss: 67481.2713
Epoch 3/3
10/10 [==============================] - 3s 305ms/step - root_mean_squared_error: 1.1200 - factorized_top_k/top_1_categorical_accuracy: 0.0011 - factorized_top_k/top_5_categorical_accuracy: 0.0175 - factorized_top_k/top_10_categorical_accuracy: 0.0380 - factorized_top_k/top_50_categorical_accuracy: 0.1758 - factorized_top_k/top_100_categorical_accuracy: 0.3040 - loss: 66297.9318 - regularization_loss: 0.0000e+00 - total_loss: 66297.9318
5/5 [==============================] - 1s 187ms/step - root_mean_squared_error: 1.1312 - factorized_top_k/top_1_categorical_accuracy: 9.5000e-04 - factorized_top_k/top_5_categorical_accuracy: 0.0083 - factorized_top_k/top_10_categorical_accuracy: 0.0220 - factorized_top_k/top_50_categorical_accuracy: 0.1248 - factorized_top_k/top_100_categorical_accuracy: 0.2347 - loss: 31062.8206 - regularization_loss: 0.0000e+00 - total_loss: 31062.8206
Retrieval top-100 accuracy: 0.235.
Ranking RMSE: 1.131.

Il risultato è un modello che esegue all'incirca altrettanto bene su entrambi i compiti come ogni modello specializzato.

Fare previsioni

Possiamo utilizzare il modello multitasking addestrato per ottenere incorporamenti di film e utenti addestrati, nonché la valutazione prevista:

trained_movie_embeddings, trained_user_embeddings, predicted_rating = model({
      "user_id": np.array(["42"]),
      "movie_title": np.array(["Dances with Wolves (1990)"])
  })
print("Predicted rating:")
print(predicted_rating)
Predicted rating:
tf.Tensor([[3.4021819]], shape=(1, 1), dtype=float32)

Sebbene i risultati qui non mostrino un chiaro vantaggio in termini di precisione da un modello congiunto in questo caso, l'apprendimento multi-task è in generale uno strumento estremamente utile. Possiamo aspettarci risultati migliori quando possiamo trasferire la conoscenza da un'attività ricca di dati (come i clic) a un'attività con pochi dati strettamente correlata (come gli acquisti).