O Google I/O é um embrulho! Fique por dentro das sessões do TensorFlow Ver sessões

Wiki Talk Comentários Previsão de Toxicidade

Ver no TensorFlow.org Executar no Google Colab Ver no GitHub Baixar caderno

Neste exemplo, consideramos a tarefa de prever se um comentário de discussão postado em uma página de discussão do Wiki contém conteúdo tóxico (ou seja, contém conteúdo “rude, desrespeitoso ou irracional”). Nós usamos um público conjunto de dados divulgado pelo AI Conversação projeto, que contém mais de 100 mil comentários da Wikipedia Inglês que são anotados por trabalhadores multidão (veja papel para a metodologia rotulagem).

Um dos desafios desse conjunto de dados é que uma proporção muito pequena dos comentários cobre tópicos delicados, como sexualidade ou religião. Como tal, treinar um modelo de rede neural neste conjunto de dados leva a um desempenho díspar nos tópicos sensíveis menores. Isso pode significar que declarações inócuas sobre esses tópicos podem ser sinalizadas incorretamente como "tóxicas" em taxas mais altas, fazendo com que a fala seja censurada injustamente

Ao impor restrições durante o treinamento, podemos treinar um modelo mais justo que executa de forma mais equitativa entre os vários grupos de tópicos.

Usaremos a biblioteca TFCO para otimizar nosso objetivo de justiça durante o treinamento.

Instalação

Vamos primeiro instalar e importar as bibliotecas relevantes. Observe que pode ser necessário reiniciar o colab uma vez após executar a primeira célula devido a pacotes desatualizados no tempo de execução. Depois de fazer isso, não deve haver mais problemas com as importações.

instalações pip

Dependendo de quando você executa a célula abaixo, você pode receber um aviso sobre a versão padrão do TensorFlow no Colab mudando para o TensorFlow 2.X em breve. Você pode ignorar esse aviso com segurança, pois este notebook foi projetado para ser compatível com o TensorFlow 1.X e 2.X.

Módulos de importação

Embora o TFCO seja compatível com a execução rápida e gráfica, este notebook assume que a execução antecipada está habilitada por padrão. Para garantir que nada seja interrompido, a execução rápida será habilitada na célula abaixo.

Habilite a execução rápida e versões de impressão

Eager execution enabled by default.
TensorFlow 2.3.2
TFMA 0.26.0
FI 0.27.0.dev

Hiperparâmetros

Primeiro, definimos alguns hiperparâmetros necessários para o pré-processamento de dados e treinamento do modelo.

hparams = {
    "batch_size": 128,
    "cnn_filter_sizes": [128, 128, 128],
    "cnn_kernel_sizes": [5, 5, 5],
    "cnn_pooling_sizes": [5, 5, 40],
    "constraint_learning_rate": 0.01,
    "embedding_dim": 100,
    "embedding_trainable": False,
    "learning_rate": 0.005,
    "max_num_words": 10000,
    "max_sequence_length": 250
}

Carregar e pré-processar o conjunto de dados

Em seguida, baixamos o conjunto de dados e o pré-processamos. Os conjuntos de treinamento, teste e validação são fornecidos como arquivos CSV separados.

toxicity_data_url = ("https://raw.githubusercontent.com/conversationai/"
                     "unintended-ml-bias-analysis/master/data/")

data_train = pd.read_csv(toxicity_data_url + "wiki_train.csv")
data_test = pd.read_csv(toxicity_data_url + "wiki_test.csv")
data_vali = pd.read_csv(toxicity_data_url + "wiki_dev.csv")

data_train.head()

O comment coluna contém os comentários de discussão e is_toxic coluna indica se um comentário é anotada como tóxico.

A seguir, nós:

  1. Separe as etiquetas
  2. Tokenizar os comentários de texto
  3. Identifique comentários que contenham termos de tópicos sensíveis

Primeiro, separamos os rótulos dos conjuntos de trem, teste e validação. Os rótulos são todos binários (0 ou 1).

labels_train = data_train["is_toxic"].values.reshape(-1, 1) * 1.0
labels_test = data_test["is_toxic"].values.reshape(-1, 1) * 1.0
labels_vali = data_vali["is_toxic"].values.reshape(-1, 1) * 1.0

Em seguida, nós tokenizar os comentários textuais usando o Tokenizer fornecido pelo Keras . Usamos apenas os comentários do conjunto de treinamento para construir um vocabulário de tokens e os usamos para converter todos os comentários em uma sequência (preenchida) de tokens do mesmo tamanho.

tokenizer = text.Tokenizer(num_words=hparams["max_num_words"])
tokenizer.fit_on_texts(data_train["comment"])

def prep_text(texts, tokenizer, max_sequence_length):
    # Turns text into into padded sequences.
    text_sequences = tokenizer.texts_to_sequences(texts)
    return sequence.pad_sequences(text_sequences, maxlen=max_sequence_length)

text_train = prep_text(data_train["comment"], tokenizer, hparams["max_sequence_length"])
text_test = prep_text(data_test["comment"], tokenizer, hparams["max_sequence_length"])
text_vali = prep_text(data_vali["comment"], tokenizer, hparams["max_sequence_length"])

Por fim, identificamos comentários relacionados a determinados grupos de tópicos sensíveis. Consideramos um subconjunto dos termos de identidade fornecidas com o conjunto de dados e agrupá-los em quatro grupos de tópicos abrangentes: sexualidade, identidade de gênero, religião e raça.

terms = {
    'sexuality': ['gay', 'lesbian', 'bisexual', 'homosexual', 'straight', 'heterosexual'], 
    'gender identity': ['trans', 'transgender', 'cis', 'nonbinary'],
    'religion': ['christian', 'muslim', 'jewish', 'buddhist', 'catholic', 'protestant', 'sikh', 'taoist'],
    'race': ['african', 'african american', 'black', 'white', 'european', 'hispanic', 'latino', 'latina', 
             'latinx', 'mexican', 'canadian', 'american', 'asian', 'indian', 'middle eastern', 'chinese', 
             'japanese']}

group_names = list(terms.keys())
num_groups = len(group_names)

Em seguida, criamos matrizes de associação de grupo separadas para os conjuntos de treinamento, teste e validação, onde as linhas correspondem aos comentários, as colunas correspondem aos quatro grupos sensíveis e cada entrada é um booleano indicando se o comentário contém um termo do grupo de tópicos.

def get_groups(text):
    # Returns a boolean NumPy array of shape (n, k), where n is the number of comments, 
    # and k is the number of groups. Each entry (i, j) indicates if the i-th comment 
    # contains a term from the j-th group.
    groups = np.zeros((text.shape[0], num_groups))
    for ii in range(num_groups):
        groups[:, ii] = text.str.contains('|'.join(terms[group_names[ii]]), case=False)
    return groups

groups_train = get_groups(data_train["comment"])
groups_test = get_groups(data_test["comment"])
groups_vali = get_groups(data_vali["comment"])

Conforme mostrado abaixo, todos os quatro grupos de tópicos constituem apenas uma pequena fração do conjunto de dados geral e têm proporções variáveis ​​de comentários tóxicos.

print("Overall label proportion = %.1f%%" % (labels_train.mean() * 100))

group_stats = []
for ii in range(num_groups):
    group_proportion = groups_train[:, ii].mean()
    group_pos_proportion = labels_train[groups_train[:, ii] == 1].mean()
    group_stats.append([group_names[ii],
                        "%.2f%%" % (group_proportion * 100), 
                        "%.1f%%" % (group_pos_proportion * 100)])
group_stats = pd.DataFrame(group_stats, 
                           columns=["Topic group", "Group proportion", "Label proportion"])
group_stats
Overall label proportion = 9.7%

Vemos que apenas 1,3% do conjunto de dados contém comentários relacionados à sexualidade. Entre eles, 37% dos comentários foram anotados como sendo tóxicos. Observe que isso é significativamente maior do que a proporção geral de comentários anotados como tóxicos. Isso pode ocorrer porque os poucos comentários que usaram esses termos de identidade o fizeram em contextos pejorativos. Conforme mencionado acima, isso pode fazer com que nosso modelo classifique erroneamente os comentários como tóxicos quando eles incluem esses termos. Uma vez que esta é a preocupação, vamos ter certeza de olhar para o Falso taxa positiva quando avaliamos o desempenho do modelo.

Construir modelo de previsão de toxicidade CNN

Tendo preparado o conjunto de dados, que agora construir uma Keras modelo para toxicidade previsão. O modelo que usamos é uma rede neural convolucional (CNN) com a mesma arquitetura usada pelo projeto Conversation AI para sua análise de debiasing. Nós nos adaptamos código fornecido por eles para construir as camadas do modelo.

O modelo usa uma camada de incorporação para converter os tokens de texto em vetores de comprimento fixo. Essa camada converte a sequência de texto de entrada em uma sequência de vetores e os passa por várias camadas de convolução e operações de agrupamento, seguidas por uma camada final totalmente conectada.

Fazemos uso de embeddings de vetores de palavras GloVe pré-treinados, que baixamos abaixo. Isso pode levar alguns minutos para ser concluído.

zip_file_url = "http://nlp.stanford.edu/data/glove.6B.zip"
zip_file = urllib.request.urlopen(zip_file_url)
archive = zipfile.ZipFile(io.BytesIO(zip_file.read()))

Usamos os embeddings luva transferido para criar uma matriz de embutir, onde as linhas contêm os embeddings palavra para os tokens na Tokenizer vocabulário 's.

embeddings_index = {}
glove_file = "glove.6B.100d.txt"

with archive.open(glove_file) as f:
    for line in f:
        values = line.split()
        word = values[0].decode("utf-8") 
        coefs = np.asarray(values[1:], dtype="float32")
        embeddings_index[word] = coefs

embedding_matrix = np.zeros((len(tokenizer.word_index) + 1, hparams["embedding_dim"]))
num_words_in_embedding = 0
for word, i in tokenizer.word_index.items():
    embedding_vector = embeddings_index.get(word)
    if embedding_vector is not None:
        num_words_in_embedding += 1
        embedding_matrix[i] = embedding_vector

Agora estamos prontos para especificar os Keras camadas. Escrevemos uma função para criar um novo modelo, que invocaremos sempre que desejarmos treinar um novo modelo.

def create_model():
    model = keras.Sequential()

    # Embedding layer.
    embedding_layer = layers.Embedding(
        embedding_matrix.shape[0],
        embedding_matrix.shape[1],
        weights=[embedding_matrix],
        input_length=hparams["max_sequence_length"],
        trainable=hparams['embedding_trainable'])
    model.add(embedding_layer)

    # Convolution layers.
    for filter_size, kernel_size, pool_size in zip(
        hparams['cnn_filter_sizes'], hparams['cnn_kernel_sizes'],
        hparams['cnn_pooling_sizes']):

        conv_layer = layers.Conv1D(
            filter_size, kernel_size, activation='relu', padding='same')
        model.add(conv_layer)

        pooled_layer = layers.MaxPooling1D(pool_size, padding='same')
        model.add(pooled_layer)

    # Add a flatten layer, a fully-connected layer and an output layer.
    model.add(layers.Flatten())
    model.add(layers.Dense(128, activation='relu'))
    model.add(layers.Dense(1))

    return model

Também definimos um método para definir sementes aleatórias. Isso é feito para garantir resultados reproduzíveis.

def set_seeds():
  np.random.seed(121212)
  tf.compat.v1.set_random_seed(212121)

Indicadores de justiça

Também escrevemos funções para traçar indicadores de justiça.

def create_examples(labels, predictions, groups, group_names):
  # Returns tf.examples with given labels, predictions, and group information.  
  examples = []
  sigmoid = lambda x: 1/(1 + np.exp(-x)) 
  for ii in range(labels.shape[0]):
    example = tf.train.Example()
    example.features.feature['toxicity'].float_list.value.append(
        labels[ii])
    example.features.feature['prediction'].float_list.value.append(
        sigmoid(predictions[ii]))  # predictions need to be in [0, 1].
    for jj in range(groups.shape[1]):
      example.features.feature[group_names[jj]].bytes_list.value.append(
          b'Yes' if groups[ii, jj] else b'No')
    examples.append(example)
  return examples
def evaluate_results(labels, predictions, groups, group_names):
  # Evaluates fairness indicators for given labels, predictions and group
  # membership info.
  examples = create_examples(labels, predictions, groups, group_names)

  # Create feature map for labels, predictions and each group.
  feature_map = {
      'prediction': tf.io.FixedLenFeature([], tf.float32),
      'toxicity': tf.io.FixedLenFeature([], tf.float32),
  }
  for group in group_names:
    feature_map[group] = tf.io.FixedLenFeature([], tf.string)

  # Serialize the examples.
  serialized_examples = [e.SerializeToString() for e in examples]

  BASE_DIR = tempfile.gettempdir()
  OUTPUT_DIR = os.path.join(BASE_DIR, 'output')

  with beam.Pipeline() as pipeline:
    model_agnostic_config = agnostic_predict.ModelAgnosticConfig(
              label_keys=['toxicity'],
              prediction_keys=['prediction'],
              feature_spec=feature_map)

    slices = [tfma.slicer.SingleSliceSpec()]
    for group in group_names:
      slices.append(
          tfma.slicer.SingleSliceSpec(columns=[group]))

    extractors = [
            model_agnostic_extractor.ModelAgnosticExtractor(
                model_agnostic_config=model_agnostic_config),
            tfma.extractors.slice_key_extractor.SliceKeyExtractor(slices)
        ]

    metrics_callbacks = [
      tfma.post_export_metrics.fairness_indicators(
          thresholds=[0.5],
          target_prediction_keys=['prediction'],
          labels_key='toxicity'),
      tfma.post_export_metrics.example_count()]

    # Create a model agnostic aggregator.
    eval_shared_model = tfma.types.EvalSharedModel(
        add_metrics_callbacks=metrics_callbacks,
        construct_fn=model_agnostic_evaluate_graph.make_construct_fn(
            add_metrics_callbacks=metrics_callbacks,
            config=model_agnostic_config))

    # Run Model Agnostic Eval.
    _ = (
        pipeline
        | beam.Create(serialized_examples)
        | 'ExtractEvaluateAndWriteResults' >>
          tfma.ExtractEvaluateAndWriteResults(
              eval_shared_model=eval_shared_model,
              output_path=OUTPUT_DIR,
              extractors=extractors,
              compute_confidence_intervals=True
          )
    )

  fairness_ind_result = tfma.load_eval_result(output_path=OUTPUT_DIR)

  # Also evaluate accuracy of the model.
  accuracy = np.mean(labels == (predictions > 0.0))

  return fairness_ind_result, accuracy
def plot_fairness_indicators(eval_result, title):
  fairness_ind_result, accuracy = eval_result
  display(HTML("<center><h2>" + title + 
               " (Accuracy = %.2f%%)" % (accuracy * 100) + "</h2></center>"))
  widget_view.render_fairness_indicator(fairness_ind_result)
def plot_multi_fairness_indicators(multi_eval_results):

  multi_results = {}
  multi_accuracy = {}
  for title, (fairness_ind_result, accuracy) in multi_eval_results.items():
    multi_results[title] = fairness_ind_result
    multi_accuracy[title] = accuracy

  title_str = "<center><h2>"
  for title in multi_eval_results.keys():
      title_str+=title + " (Accuracy = %.2f%%)" % (multi_accuracy[title] * 100) + "; "
  title_str=title_str[:-2]
  title_str+="</h2></center>"
  # fairness_ind_result, accuracy = eval_result
  display(HTML(title_str))
  widget_view.render_fairness_indicator(multi_eval_results=multi_results)

Treinar modelo sem restrições

Para o primeiro trem modelo que, otimizamos uma perda cross-entropia simples, sem quaisquer restrições ..

# Set random seed for reproducible results.
set_seeds()
# Optimizer and loss.
optimizer = tf.keras.optimizers.Adam(learning_rate=hparams["learning_rate"])
loss = lambda y_true, y_pred: tf.keras.losses.binary_crossentropy(
    y_true, y_pred, from_logits=True)

# Create, compile and fit model.
model_unconstrained = create_model()
model_unconstrained.compile(optimizer=optimizer, loss=loss)

model_unconstrained.fit(
    x=text_train, y=labels_train, batch_size=hparams["batch_size"], epochs=2)
Epoch 1/2
748/748 [==============================] - 51s 69ms/step - loss: 0.1590
Epoch 2/2
748/748 [==============================] - 48s 65ms/step - loss: 0.1217
<tensorflow.python.keras.callbacks.History at 0x7f55603a1d30>

Tendo treinado o modelo irrestrito, plotamos várias métricas de avaliação para o modelo no conjunto de teste.

scores_unconstrained_test = model_unconstrained.predict(text_test)
eval_result_unconstrained = evaluate_results(
    labels_test, scores_unconstrained_test, groups_test, group_names)
WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
INFO:tensorflow:ExampleCount post export metric: could not find any of the standard keys in predictions_dict (keys were: dict_keys(['prediction']))
INFO:tensorflow:ExampleCount post export metric: could not find any of the standard keys in predictions_dict (keys were: dict_keys(['prediction']))
INFO:tensorflow:Using the first key from predictions_dict: prediction
INFO:tensorflow:Using the first key from predictions_dict: prediction
WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:113: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version.
Instructions for updating:
Use eager execution and: 
`tf.data.TFRecordDataset(path)`
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:113: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version.
Instructions for updating:
Use eager execution and: 
`tf.data.TFRecordDataset(path)`

Conforme explicado acima, estamos nos concentrando na taxa de falsos positivos. Em sua versão atual (0.1.2), os Indicadores de Equidade selecionam a taxa de falsos negativos por padrão. Depois de executar a linha abaixo, vá em frente e desmarque false_negative_rate e selecione false_positive_rate para ver a métrica na qual estamos interessados.

plot_fairness_indicators(eval_result_unconstrained, "Unconstrained")

Embora a taxa geral de falsos positivos seja inferior a 2%, a taxa de falsos positivos nos comentários relacionados à sexualidade é significativamente maior. Isso ocorre porque o grupo da sexualidade é muito pequeno e tem uma fração desproporcionalmente maior de comentários anotados como tóxicos. Portanto, treinar um modelo sem restrições resulta no modelo acreditando que os termos relacionados à sexualidade são um forte indicador de toxicidade.

Treine com restrições em taxas de falsos positivos

Para evitar grandes diferenças nas taxas de falsos positivos entre grupos diferentes, treinamos a seguir um modelo restringindo as taxas de falsos positivos para cada grupo dentro de um limite desejado. Neste caso, vamos optimizar a taxa de erro do modelo de objecto para o grupo-por taxas de falsos positivos de ser menor ou igual a 2%.

O treinamento em minibatches com restrições por grupo pode ser desafiador para este conjunto de dados, no entanto, como os grupos que desejamos restringir são todos pequenos em tamanho e é provável que os minibatches individuais contenham poucos exemplos de cada grupo. Conseqüentemente, os gradientes que calculamos durante o treinamento serão ruidosos e resultarão na convergência do modelo muito lentamente.

Para mitigar esse problema, recomendamos o uso de dois fluxos de minibatches, com o primeiro fluxo formado como antes de todo o conjunto de treinamento e o segundo fluxo formado exclusivamente a partir dos exemplos de grupos sensíveis. Vamos calcular o objetivo usando minibatches do primeiro stream e as restrições por grupo usando minibatches do segundo stream. Como os lotes do segundo fluxo provavelmente contêm um número maior de exemplos de cada grupo, esperamos que nossas atualizações sejam menos ruidosas.

Criamos recursos, rótulos e tensores de grupos separados para conter os minibatches dos dois fluxos.

# Set random seed.
set_seeds()

# Features tensors.
batch_shape = (hparams["batch_size"], hparams['max_sequence_length'])
features_tensor = tf.Variable(np.zeros(batch_shape, dtype='int32'), name='x')
features_tensor_sen = tf.Variable(np.zeros(batch_shape, dtype='int32'), name='x_sen')

# Labels tensors.
batch_shape = (hparams["batch_size"], 1)
labels_tensor = tf.Variable(np.zeros(batch_shape, dtype='float32'), name='labels')
labels_tensor_sen = tf.Variable(np.zeros(batch_shape, dtype='float32'), name='labels_sen')

# Groups tensors.
batch_shape = (hparams["batch_size"], num_groups)
groups_tensor_sen = tf.Variable(np.zeros(batch_shape, dtype='float32'), name='groups_sen')

Instanciamos um novo modelo e calculamos previsões para minibatches dos dois fluxos.

# Create model, and separate prediction functions for the two streams. 
# For the predictions, we use a nullary function returning a Tensor to support eager mode.
model_constrained = create_model()

def predictions():
  return model_constrained(features_tensor)

def predictions_sen():
  return model_constrained(features_tensor_sen)

Em seguida, configuramos um problema de otimização restrito com a taxa de erro como o objetivo e com restrições na taxa de falsos positivos por grupo.

epsilon = 0.02  # Desired false-positive rate threshold.

# Set up separate contexts for the two minibatch streams.
context = tfco.rate_context(predictions, lambda:labels_tensor)
context_sen = tfco.rate_context(predictions_sen, lambda:labels_tensor_sen)

# Compute the objective using the first stream.
objective = tfco.error_rate(context)

# Compute the constraint using the second stream.
# Subset the examples belonging to the "sexuality" group from the second stream 
# and add a constraint on the group's false positive rate.
context_sen_subset = context_sen.subset(lambda: groups_tensor_sen[:, 0] > 0)
constraint = [tfco.false_positive_rate(context_sen_subset) <= epsilon]

# Create a rate minimization problem.
problem = tfco.RateMinimizationProblem(objective, constraint)

# Set up a constrained optimizer.
optimizer = tfco.ProxyLagrangianOptimizerV2(
    optimizer=tf.keras.optimizers.Adam(learning_rate=hparams["learning_rate"]),
    num_constraints=problem.num_constraints)

# List of variables to optimize include the model weights, 
# and the trainable variables from the rate minimization problem and 
# the constrained optimizer.
var_list = (model_constrained.trainable_weights + problem.trainable_variables +
            optimizer.trainable_variables())

Estamos prontos para treinar o modelo. Mantemos um contador separado para os dois fluxos de minibatch. Toda vez que efectuar uma actualização de gradiente, vamos ter de copiar o conteúdo minibatch da primeira corrente para os tensores features_tensor e labels_tensor , e os conteúdos minibatch do segundo fluxo para os tensores features_tensor_sen , labels_tensor_sen e groups_tensor_sen .

# Indices of sensitive group members.
protected_group_indices = np.nonzero(groups_train.sum(axis=1))[0]

num_examples = text_train.shape[0]
num_examples_sen = protected_group_indices.shape[0]
batch_size = hparams["batch_size"]

# Number of steps needed for one epoch over the training sample.
num_steps = int(num_examples / batch_size)

start_time = time.time()

# Loop over minibatches.
for batch_index in range(num_steps):
    # Indices for current minibatch in the first stream.
    batch_indices = np.arange(
        batch_index * batch_size, (batch_index + 1) * batch_size)
    batch_indices = [ind % num_examples for ind in batch_indices]

    # Indices for current minibatch in the second stream.
    batch_indices_sen = np.arange(
        batch_index * batch_size, (batch_index + 1) * batch_size)
    batch_indices_sen = [protected_group_indices[ind % num_examples_sen]
                         for ind in batch_indices_sen]

    # Assign features, labels, groups from the minibatches to the respective tensors.
    features_tensor.assign(text_train[batch_indices, :])
    labels_tensor.assign(labels_train[batch_indices])

    features_tensor_sen.assign(text_train[batch_indices_sen, :])
    labels_tensor_sen.assign(labels_train[batch_indices_sen])
    groups_tensor_sen.assign(groups_train[batch_indices_sen, :])

    # Gradient update.
    optimizer.minimize(problem, var_list=var_list)

    # Record and print batch training stats every 10 steps.
    if (batch_index + 1) % 10 == 0 or batch_index in (0, num_steps - 1):
      hinge_loss = problem.objective()
      max_violation = max(problem.constraints())

      elapsed_time = time.time() - start_time
      sys.stdout.write(
          "\rStep %d / %d: Elapsed time = %ds, Loss = %.3f, Violation = %.3f" % 
          (batch_index + 1, num_steps, elapsed_time, hinge_loss, max_violation))
Step 747 / 747: Elapsed time = 180s, Loss = 0.068, Violation = -0.020

Tendo treinado o modelo restrito, plotamos várias métricas de avaliação para o modelo no conjunto de teste.

scores_constrained_test = model_constrained.predict(text_test)
eval_result_constrained = evaluate_results(
    labels_test, scores_constrained_test, groups_test, group_names)
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring send_type hint: <class 'NoneType'>
WARNING:apache_beam.typehints.typehints:Ignoring return_type hint: <class 'NoneType'>
INFO:tensorflow:ExampleCount post export metric: could not find any of the standard keys in predictions_dict (keys were: dict_keys(['prediction']))
INFO:tensorflow:ExampleCount post export metric: could not find any of the standard keys in predictions_dict (keys were: dict_keys(['prediction']))
INFO:tensorflow:Using the first key from predictions_dict: prediction
INFO:tensorflow:Using the first key from predictions_dict: prediction
WARNING:apache_beam.io.filebasedsink:Deleting 1 existing files in target path matching: 
WARNING:apache_beam.io.filebasedsink:Deleting 1 existing files in target path matching: 
WARNING:apache_beam.io.filebasedsink:Deleting 1 existing files in target path matching:

Como da última vez, lembre-se de selecionar false_positive_rate.

plot_fairness_indicators(eval_result_constrained, "Constrained")
multi_results = {
    'constrained':eval_result_constrained,
    'unconstrained':eval_result_unconstrained,
}
plot_multi_fairness_indicators(multi_eval_results=multi_results)

Como podemos ver nos Indicadores de Equidade, em comparação com o modelo irrestrito, o modelo restrito produz taxas de falsos positivos significativamente mais baixas para os comentários relacionados à sexualidade, e o faz com apenas uma ligeira queda na precisão geral.