Scikit-Learn Model Card Toolkit Demo

Stay organized with collections Save and categorize content based on your preferences.

View on Run in Google Colab View on GitHub Download notebook


This notebook demonstrates how to generate a model card using the Model Card Toolkit with a scikit-learn model in a Jupyter/Colab environment. You can learn more about model cards at


We first need to install and import the necessary packages.

Upgrade to Pip 20.2 and Install Packages

pip install --upgrade pip==21.3
pip install -U seaborn scikit-learn model-card-toolkit

Did you restart the runtime?

If you are using Google Colab, the first time that you run the cell above, you must restart the runtime (Runtime > Restart runtime ...).

Import packages

We import necessary packages, including scikit-learn.

from datetime import date
from io import BytesIO
from IPython import display
import model_card_toolkit as mctlib
from sklearn.datasets import load_breast_cancer
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import plot_roc_curve, plot_confusion_matrix

import base64
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import uuid

Load data

This example uses the Breast Cancer Wisconsin Diagnostic dataset that scikit-learn can load using the load_breast_cancer() function.

cancer = load_breast_cancer()

X = pd.DataFrame(, columns=cancer.feature_names)
y = pd.Series(

X_train, X_test, y_train, y_test = train_test_split(X, y)
17     0
117    0
195    1
337    0
509    0
dtype: int64

Plot data

We will create several plots from the data that we will include in the model card.

# Utility function that will export a plot to a base-64 encoded string that the model card will accept.

def plot_to_str():
    img = BytesIO()
    plt.savefig(img, format='png')
    return base64.encodebytes(img.getvalue()).decode('utf-8')
# Plot the mean radius feature for both the train and test sets

sns.displot(x=X_train['mean radius'], hue=y_train)
mean_radius_train = plot_to_str()

sns.displot(x=X_test['mean radius'], hue=y_test)
mean_radius_test = plot_to_str()



# Plot the mean texture feature for both the train and test sets

sns.displot(x=X_train['mean texture'], hue=y_train)
mean_texture_train = plot_to_str()

sns.displot(x=X_test['mean texture'], hue=y_test)
mean_texture_test = plot_to_str()



Train model

# Create a classifier and fit the training data

clf = GradientBoostingClassifier().fit(X_train, y_train)

Evaluate model

# Plot a ROC curve

plot_roc_curve(clf, X_test, y_test)
roc_curve = plot_to_str()
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/sklearn/utils/ FutureWarning: Function plot_roc_curve is deprecated; Function :func:`plot_roc_curve` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: :meth:`sklearn.metric.RocCurveDisplay.from_predictions` or :meth:`sklearn.metric.RocCurveDisplay.from_estimator`.
  warnings.warn(msg, category=FutureWarning)


# Plot a confusion matrix

plot_confusion_matrix(clf, X_test, y_test)
confusion_matrix = plot_to_str()
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/sklearn/utils/ FutureWarning: Function plot_confusion_matrix is deprecated; Function `plot_confusion_matrix` is deprecated in 1.0 and will be removed in 1.2. Use one of the class methods: ConfusionMatrixDisplay.from_predictions or ConfusionMatrixDisplay.from_estimator.
  warnings.warn(msg, category=FutureWarning)


Create a model card

Initialize toolkit and model card

mct = mctlib.ModelCardToolkit()

model_card = mct.scaffold_assets()

Annotate information into model card = 'Breast Cancer Wisconsin (Diagnostic) Dataset'
model_card.model_details.overview = (
    'This model predicts whether breast cancer is benign or malignant based on '
    'image measurements.')
model_card.model_details.owners = [
    mctlib.Owner(name= 'Model Cards Team', contact='')
model_card.model_details.references = [
] = str(uuid.uuid4()) = str(

model_card.considerations.ethical_considerations = [mctlib.Risk(
    name=('Manual selection of image sections to digitize could create '
            'selection bias'),
    mitigation_strategy='Automate the selection process'
model_card.considerations.limitations = [mctlib.Limitation(description='Breast cancer diagnosis')]
model_card.considerations.use_cases = [mctlib.UseCase(description='Breast cancer diagnosis')]
model_card.considerations.users = [mctlib.User(description='Medical professionals'), mctlib.User(description='ML researchers')][0].graphics.description = (
  f'{len(X_train)} rows with {len(X_train.columns)} features')[0].graphics.collection = [
][1].graphics.description = (
  f'{len(X_test)} rows with {len(X_test.columns)} features')[1].graphics.collection = [
] = (
  'ROC curve and confusion matrix') = [


Generate model card

# Return the model card document as an HTML page

html = mct.export_format()