RNN ile metin oluşturma

TensorFlow.org'da görüntüleyin Google Colab'da çalıştırın Kaynağı GitHub'da görüntüleyin Not defterini indir

Bu öğretici, karakter tabanlı bir RNN kullanarak nasıl metin oluşturulacağını gösterir. Sen Andrej karpathy en dan Shakespeare'in yazılı bir veri kümesi ile çalışacaktır Tekrarlayan Sinir Ağları mantıksız etkinliği . Bu verilerden ("Shakespear") bir dizi karakter verildiğinde, dizideki bir sonraki karakteri ("e") tahmin etmek için bir model eğitin. Model tekrar tekrar çağrılarak daha uzun metin dizileri oluşturulabilir.

Bu öğretici kullanılarak uygulanan çalıştırılabilir kodu tf.keras ve istekli yürütme . Aşağıdaki, bu öğreticideki modelin 30 dönem boyunca eğitildiği ve "Q" istemiyle başlatıldığı örnek çıktıdır:

QUEENE:
I had thought thou hadst a Roman; for the oracle,
Thus by All bids the man against the word,
Which are so weak of care, by old care done;
Your children were in your holy love,
And the precipitation through the bleeding throne.

BISHOP OF ELY:
Marry, and will, my lord, to weep in such a one were prettiest;
Yet now I was adopted heir
Of the world's lamentable day,
To watch the next way with his father with his face?

ESCALUS:
The cause why then we are all resolved more sons.

VOLUMNIA:
O, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, it is no sin it should be dead,
And love and pale as any will to that word.

QUEEN ELIZABETH:
But how long have I heard the soul for this world,
And show his hands of life be proved to stand.

PETRUCHIO:
I say he look'd on, if I must be content
To stay him from the fatal of our country's bliss.
His lordship pluck'd from this sentence then for prey,
And then let us twain, being the moon,
were she such a case as fills m

Cümlelerin bazıları dilbilgisel olsa da, çoğu mantıklı değil. Model kelimelerin anlamlarını öğrenmedi, ancak şunu düşünün:

  • Model karakter tabanlıdır. Eğitim başladığında, model İngilizce bir kelimenin nasıl yazılacağını veya kelimelerin bir metin birimi olduğunu bile bilmiyordu.

  • Çıktının yapısı bir oyuna benzer; metin blokları genellikle veri kümesine benzer şekilde tümü büyük harflerle bir konuşmacı adıyla başlar.

  • Aşağıda gösterildiği gibi, model küçük metin grupları (her biri 100 karakter) üzerinde eğitilmiştir ve yine de tutarlı bir yapıya sahip daha uzun bir metin dizisi oluşturabilmektedir.

Kurmak

TensorFlow ve diğer kitaplıkları içe aktarın

import tensorflow as tf
from tensorflow.keras.layers.experimental import preprocessing

import numpy as np
import os
import time

Shakespeare veri kümesini indirin

Bu kodu kendi verileriniz üzerinde çalıştırmak için aşağıdaki satırı değiştirin.

path_to_file = tf.keras.utils.get_file('shakespeare.txt', 'https://storage.googleapis.com/download.tensorflow.org/data/shakespeare.txt')
Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/shakespeare.txt
1122304/1115394 [==============================] - 0s 0us/step
1130496/1115394 [==============================] - 0s 0us/step

verileri oku

Önce metne bakın:

# Read, then decode for py2 compat.
text = open(path_to_file, 'rb').read().decode(encoding='utf-8')
# length of text is the number of characters in it
print(f'Length of text: {len(text)} characters')
Length of text: 1115394 characters
# Take a look at the first 250 characters in text
print(text[:250])
First Citizen:
Before we proceed any further, hear me speak.

All:
Speak, speak.

First Citizen:
You are all resolved rather to die than to famish?

All:
Resolved. resolved.

First Citizen:
First, you know Caius Marcius is chief enemy to the people.
# The unique characters in the file
vocab = sorted(set(text))
print(f'{len(vocab)} unique characters')
65 unique characters

Metni işle

Metni vektörleştir

Eğitimden önce, dizeleri sayısal bir temsile dönüştürmeniz gerekir.

preprocessing.StringLookup tabaka sayısal kimliğine her bir karakteri dönüştürebilir. Sadece önce belirteçlere bölünmesi için metne ihtiyacı var.

example_texts = ['abcdefg', 'xyz']

chars = tf.strings.unicode_split(example_texts, input_encoding='UTF-8')
chars
2021-08-11 18:24:53.295402: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-11 18:24:53.303654: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-11 18:24:53.304580: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-11 18:24:53.306209: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2021-08-11 18:24:53.306828: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-11 18:24:53.307802: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-11 18:24:53.308798: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-11 18:24:53.896425: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-11 18:24:53.897329: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-11 18:24:53.898198: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:937] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2021-08-11 18:24:53.899171: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 14648 MB memory:  -> device: 0, name: Tesla V100-SXM2-16GB, pci bus id: 0000:00:05.0, compute capability: 7.0
<tf.RaggedTensor [[b'a', b'b', b'c', b'd', b'e', b'f', b'g'], [b'x', b'y', b'z']]>

Şimdi oluşturmak preprocessing.StringLookup katmanı:

ids_from_chars = preprocessing.StringLookup(
    vocabulary=list(vocab), mask_token=None)

Form belirteçlerini karakter kimliklerine dönüştürür:

ids = ids_from_chars(chars)
ids
<tf.RaggedTensor [[40, 41, 42, 43, 44, 45, 46], [63, 64, 65]]>

Bu öğreticinin amacı metin oluşturmak olduğundan, bu gösterimi tersine çevirmek ve insan tarafından okunabilir dizeleri kurtarmak da önemli olacaktır. Bu kullanabilirsiniz İçin preprocessing.StringLookup(..., invert=True) .

chars_from_ids = tf.keras.layers.experimental.preprocessing.StringLookup(
    vocabulary=ids_from_chars.get_vocabulary(), invert=True, mask_token=None)

Bu katman olarak kimlikleri vektörlerin karakterleri ve döner onları kurtarır tf.RaggedTensor karakter:

chars = chars_from_ids(ids)
chars
<tf.RaggedTensor [[b'a', b'b', b'c', b'd', b'e', b'f', b'g'], [b'x', b'y', b'z']]>

Sen edebilirsiniz tf.strings.reduce_join dizeleri geri karakterleri katılmak.

tf.strings.reduce_join(chars, axis=-1).numpy()
array([b'abcdefg', b'xyz'], dtype=object)
def text_from_ids(ids):
  return tf.strings.reduce_join(chars_from_ids(ids), axis=-1)

tahmin görevi

Bir karakter veya bir dizi karakter verildiğinde, bir sonraki en olası karakter hangisidir? Modeli gerçekleştirmesi için eğittiğiniz görev budur. Modelin girdisi bir karakter dizisi olacaktır ve modeli her zaman adımında aşağıdaki karakter olan çıktıyı tahmin etmek için eğitirsiniz.

RNN'ler, bu ana kadar hesaplanan tüm karakterler göz önüne alındığında, daha önce görülen öğelere bağlı bir dahili durumu korudukları için, bir sonraki karakter nedir?

Eğitim örnekleri ve hedefleri oluşturun

Ardından metni örnek dizilere bölün. Her giriş sekansı içerir seq_length metin karakterlerini.

Her giriş dizisi için, bir karakter sağa kaydırılanlar dışında, karşılık gelen hedefler aynı uzunlukta metin içerir.

Yani parçaları metin kırmak seq_length+1 . Örneğin, demek seq_length 4 ve bizim metin "Merhaba" dir. Giriş dizisi "Cehennem" ve hedef dizi "ello" olacaktır.

Bu birinci kullanımını yapmak için tf.data.Dataset.from_tensor_slices karakter endekslerinin bir akışı içine metin vektör dönüştürme işlevi görür.

all_ids = ids_from_chars(tf.strings.unicode_split(text, 'UTF-8'))
all_ids
<tf.Tensor: shape=(1115394,), dtype=int64, numpy=array([19, 48, 57, ..., 46,  9,  1])>
ids_dataset = tf.data.Dataset.from_tensor_slices(all_ids)
for ids in ids_dataset.take(10):
    print(chars_from_ids(ids).numpy().decode('utf-8'))
F
i
r
s
t
 
C
i
t
i
seq_length = 100
examples_per_epoch = len(text)//(seq_length+1)

batch yöntemi kolayca istenilen boyutta dizilerine bu bireysel karakterleri dönüştürmek sağlar.

sequences = ids_dataset.batch(seq_length+1, drop_remainder=True)

for seq in sequences.take(1):
  print(chars_from_ids(seq))
tf.Tensor(
[b'F' b'i' b'r' b's' b't' b' ' b'C' b'i' b't' b'i' b'z' b'e' b'n' b':'
 b'\n' b'B' b'e' b'f' b'o' b'r' b'e' b' ' b'w' b'e' b' ' b'p' b'r' b'o'
 b'c' b'e' b'e' b'd' b' ' b'a' b'n' b'y' b' ' b'f' b'u' b'r' b't' b'h'
 b'e' b'r' b',' b' ' b'h' b'e' b'a' b'r' b' ' b'm' b'e' b' ' b's' b'p'
 b'e' b'a' b'k' b'.' b'\n' b'\n' b'A' b'l' b'l' b':' b'\n' b'S' b'p' b'e'
 b'a' b'k' b',' b' ' b's' b'p' b'e' b'a' b'k' b'.' b'\n' b'\n' b'F' b'i'
 b'r' b's' b't' b' ' b'C' b'i' b't' b'i' b'z' b'e' b'n' b':' b'\n' b'Y'
 b'o' b'u' b' '], shape=(101,), dtype=string)

Belirteçleri tekrar dizgelerde birleştirirseniz, bunun ne yaptığını görmek daha kolay:

for seq in sequences.take(5):
  print(text_from_ids(seq).numpy())
b'First Citizen:\nBefore we proceed any further, hear me speak.\n\nAll:\nSpeak, speak.\n\nFirst Citizen:\nYou '
b'are all resolved rather to die than to famish?\n\nAll:\nResolved. resolved.\n\nFirst Citizen:\nFirst, you k'
b"now Caius Marcius is chief enemy to the people.\n\nAll:\nWe know't, we know't.\n\nFirst Citizen:\nLet us ki"
b"ll him, and we'll have corn at our own price.\nIs't a verdict?\n\nAll:\nNo more talking on't; let it be d"
b'one: away, away!\n\nSecond Citizen:\nOne word, good citizens.\n\nFirst Citizen:\nWe are accounted poor citi'

Eğitim için, bir veri kümesi gerekir (input, label) çiftleri. Burada input ve label sekanslarıdır. Her zaman adımında giriş, geçerli karakterdir ve etiket sonraki karakterdir.

Bir diziyi girdi olarak alan, çoğaltan ve her zaman adımı için girdiyi ve etiketi hizalamak için değiştiren bir işlev:

def split_input_target(sequence):
    input_text = sequence[:-1]
    target_text = sequence[1:]
    return input_text, target_text
split_input_target(list("Tensorflow"))
(['T', 'e', 'n', 's', 'o', 'r', 'f', 'l', 'o'],
 ['e', 'n', 's', 'o', 'r', 'f', 'l', 'o', 'w'])
dataset = sequences.map(split_input_target)
for input_example, target_example in dataset.take(1):
    print("Input :", text_from_ids(input_example).numpy())
    print("Target:", text_from_ids(target_example).numpy())
Input : b'First Citizen:\nBefore we proceed any further, hear me speak.\n\nAll:\nSpeak, speak.\n\nFirst Citizen:\nYou'
Target: b'irst Citizen:\nBefore we proceed any further, hear me speak.\n\nAll:\nSpeak, speak.\n\nFirst Citizen:\nYou '
2021-08-11 18:24:54.893532: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:185] None of the MLIR Optimization Passes are enabled (registered 2)

Eğitim grupları oluşturun

Kullanılan tf.data yönetilebilir dizileri metin bölmek. Ancak bu verileri modele beslemeden önce, verileri karıştırmanız ve yığınlar halinde paketlemeniz gerekir.

# Batch size
BATCH_SIZE = 64

# Buffer size to shuffle the dataset
# (TF data is designed to work with possibly infinite sequences,
# so it doesn't attempt to shuffle the entire sequence in memory. Instead,
# it maintains a buffer in which it shuffles elements).
BUFFER_SIZE = 10000

dataset = (
    dataset
    .shuffle(BUFFER_SIZE)
    .batch(BATCH_SIZE, drop_remainder=True)
    .prefetch(tf.data.experimental.AUTOTUNE))

dataset
<PrefetchDataset shapes: ((64, 100), (64, 100)), types: (tf.int64, tf.int64)>

Modeli Oluştur

Bu bölüm, bir şekilde bir model tanımlar keras.Model alt sınıf (ayrıntılar için bakınız sınıflara aracılığıyla yeni Katmanlar ve modelleri yapma ).

Bu modelin üç katmanı vardır:

  • tf.keras.layers.Embedding : giriş katmanı. İle bir vektöre her karakter kimliğini eşler bir trainable arama tablosu embedding_dim boyutları;
  • tf.keras.layers.GRU : boyutu RNN A tipi units=rnn_units (Ayrıca burada LSTM katmanı kullanabilir.)
  • tf.keras.layers.Dense : çıktı katmanı ile vocab_size çıkışları. Sözlükteki her karakter için bir logit çıktısı verir. Bunlar, modele göre her karakterin log-olasılığıdır.
# Length of the vocabulary in chars
vocab_size = len(vocab)

# The embedding dimension
embedding_dim = 256

# Number of RNN units
rnn_units = 1024
class MyModel(tf.keras.Model):
  def __init__(self, vocab_size, embedding_dim, rnn_units):
    super().__init__(self)
    self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
    self.gru = tf.keras.layers.GRU(rnn_units,
                                   return_sequences=True,
                                   return_state=True)
    self.dense = tf.keras.layers.Dense(vocab_size)

  def call(self, inputs, states=None, return_state=False, training=False):
    x = inputs
    x = self.embedding(x, training=training)
    if states is None:
      states = self.gru.get_initial_state(x)
    x, states = self.gru(x, initial_state=states, training=training)
    x = self.dense(x, training=training)

    if return_state:
      return x, states
    else:
      return x
model = MyModel(
    # Be sure the vocabulary size matches the `StringLookup` layers.
    vocab_size=len(ids_from_chars.get_vocabulary()),
    embedding_dim=embedding_dim,
    rnn_units=rnn_units)

Model, her karakter için gömmeyi arar, gömme girdi olarak bir kez GRU'yu çalıştırır ve bir sonraki karakterin log-olasılığını tahmin eden logitler oluşturmak için yoğun katmanı uygular:

Modelden geçen verilerin bir çizimi

modeli deneyin

Şimdi, beklendiği gibi davrandığını görmek için modeli çalıştırın.

İlk önce çıktının şeklini kontrol edin:

for input_example_batch, target_example_batch in dataset.take(1):
    example_batch_predictions = model(input_example_batch)
    print(example_batch_predictions.shape, "# (batch_size, sequence_length, vocab_size)")
2021-08-11 18:24:57.345541: I tensorflow/stream_executor/cuda/cuda_dnn.cc:369] Loaded cuDNN version 8100
(64, 100, 66) # (batch_size, sequence_length, vocab_size)

Yukarıdaki örnekte giriş dizi uzunluğu olan 100 ama model, herhangi bir uzunlukta girdilerine çalıştırılabilir:

model.summary()
Model: "my_model"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding (Embedding)        multiple                  16896     
_________________________________________________________________
gru (GRU)                    multiple                  3938304   
_________________________________________________________________
dense (Dense)                multiple                  67650     
=================================================================
Total params: 4,022,850
Trainable params: 4,022,850
Non-trainable params: 0
_________________________________________________________________

Modelden gerçek tahminler almak için, gerçek karakter indekslerini elde etmek için çıktı dağılımından örneklemeniz gerekir. Bu dağılım, karakter sözlüğü üzerindeki logitlerle tanımlanır.

Partideki ilk örnek için deneyin:

sampled_indices = tf.random.categorical(example_batch_predictions[0], num_samples=1)
sampled_indices = tf.squeeze(sampled_indices, axis=-1).numpy()

Bu bize her zaman adımında bir sonraki karakter indeksinin bir tahminini verir:

sampled_indices
array([41, 38,  9, 28,  6, 50, 20, 59, 44,  5, 51, 19, 40, 61, 13, 18, 32,
        0, 13,  0, 27, 37, 10, 46, 38, 40, 28, 22, 14, 44, 35, 22, 44, 16,
       17,  8, 55, 17, 39, 47, 47, 23,  3, 32, 30, 15, 10, 32,  8,  8,  3,
       47, 40, 38, 13,  5, 57, 12, 39,  5,  6, 14, 30, 12, 63, 51, 10, 14,
       52,  1, 47, 15, 48, 28, 38, 16, 22,  7, 59, 45, 44, 62, 23, 32, 36,
       40, 28, 65, 60,  7,  8,  0, 19, 28, 32, 62, 61, 20, 64,  6])

Bu eğitimsiz model tarafından öngörülen metni görmek için bunların kodunu çözün:

print("Input:\n", text_from_ids(input_example_batch[0]).numpy())
print()
print("Next Char Predictions:\n", text_from_ids(sampled_indices).numpy())
Input:
 b'ous, and not valiant, you have shamed me\nIn your condemned seconds.\n\nCOMINIUS:\nIf I should tell thee'

Next Char Predictions:
 b"bY.O'kGte&lFav?ES[UNK]?[UNK]NX3gYaOIAeVIeCD-pDZhhJ!SQB3S--!haY?&r;Z&'AQ;xl3Am\nhBiOYCI,tfewJSWaOzu,-[UNK]FOSwvGy'"

Modeli eğit

Bu noktada problem standart bir sınıflandırma problemi olarak ele alınabilir. Önceki RNN durumu ve bu adımdaki girdi göz önüne alındığında, bir sonraki karakterin sınıfını tahmin edin.

Bir optimize edici ve bir kayıp işlevi ekleyin

Standart tf.keras.losses.sparse_categorical_crossentropy bu tahminlerin son boyutu boyunca uygulanır çünkü kayıp fonksiyonu bu durumda çalışır.

Modeliniz logits döndürür olduğundan, ayarlamanız gerekir from_logits bayrağı.

loss = tf.losses.SparseCategoricalCrossentropy(from_logits=True)
example_batch_loss = loss(target_example_batch, example_batch_predictions)
mean_loss = example_batch_loss.numpy().mean()
print("Prediction shape: ", example_batch_predictions.shape, " # (batch_size, sequence_length, vocab_size)")
print("Mean loss:        ", mean_loss)
Prediction shape:  (64, 100, 66)  # (batch_size, sequence_length, vocab_size)
Mean loss:         4.191435

Yeni başlatılan bir model kendinden çok emin olmamalıdır, çıktı logitlerinin tümü benzer büyüklüklere sahip olmalıdır. Bunu doğrulamak için ortalama kaybın üstel değerinin yaklaşık olarak kelime boyutuna eşit olduğunu kontrol edebilirsiniz. Çok daha yüksek bir kayıp, modelin yanlış cevaplarından emin olduğu ve kötü bir şekilde başlatıldığı anlamına gelir:

tf.exp(mean_loss).numpy()
66.11759

Kullanarak eğitim prosedürü yapılandırma tf.keras.Model.compile yöntemi. Kullanım tf.keras.optimizers.Adam varsayılan argümanlar ve zarar fonksiyonu ile.

model.compile(optimizer='adam', loss=loss)

Kontrol noktalarını yapılandır

Bir kullan tf.keras.callbacks.ModelCheckpoint kontrol noktaları eğitim sırasında kaydedilmiş olduğundan emin olmak için:

# Directory where the checkpoints will be saved
checkpoint_dir = './training_checkpoints'
# Name of the checkpoint files
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt_{epoch}")

checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
    filepath=checkpoint_prefix,
    save_weights_only=True)

Eğitimi yürütün

Eğitim süresini makul tutmak için modeli eğitmek için 10 dönem kullanın. Colab'de daha hızlı eğitim için çalışma zamanını GPU olarak ayarlayın.

EPOCHS = 20
history = model.fit(dataset, epochs=EPOCHS, callbacks=[checkpoint_callback])
Epoch 1/20
172/172 [==============================] - 6s 23ms/step - loss: 2.7361
Epoch 2/20
172/172 [==============================] - 5s 23ms/step - loss: 2.0067
Epoch 3/20
172/172 [==============================] - 5s 23ms/step - loss: 1.7364
Epoch 4/20
172/172 [==============================] - 5s 23ms/step - loss: 1.5729
Epoch 5/20
172/172 [==============================] - 5s 23ms/step - loss: 1.4700
Epoch 6/20
172/172 [==============================] - 5s 23ms/step - loss: 1.4000
Epoch 7/20
172/172 [==============================] - 5s 23ms/step - loss: 1.3465
Epoch 8/20
172/172 [==============================] - 5s 23ms/step - loss: 1.3007
Epoch 9/20
172/172 [==============================] - 5s 23ms/step - loss: 1.2610
Epoch 10/20
172/172 [==============================] - 5s 23ms/step - loss: 1.2223
Epoch 11/20
172/172 [==============================] - 5s 23ms/step - loss: 1.1842
Epoch 12/20
172/172 [==============================] - 5s 23ms/step - loss: 1.1460
Epoch 13/20
172/172 [==============================] - 5s 23ms/step - loss: 1.1055
Epoch 14/20
172/172 [==============================] - 5s 23ms/step - loss: 1.0626
Epoch 15/20
172/172 [==============================] - 5s 24ms/step - loss: 1.0170
Epoch 16/20
172/172 [==============================] - 5s 23ms/step - loss: 0.9692
Epoch 17/20
172/172 [==============================] - 5s 23ms/step - loss: 0.9181
Epoch 18/20
172/172 [==============================] - 5s 23ms/step - loss: 0.8670
Epoch 19/20
172/172 [==============================] - 5s 23ms/step - loss: 0.8143
Epoch 20/20
172/172 [==============================] - 5s 23ms/step - loss: 0.7647

Metin oluştur

Bu modelle metin oluşturmanın en basit yolu, onu bir döngüde çalıştırmak ve onu yürütürken modelin dahili durumunu takip etmektir.

Metin oluşturmak için modelin çıktısı girdiye geri beslenir

Modeli her aradığınızda, bir metin ve dahili bir duruma geçersiniz. Model, bir sonraki karakter ve onun yeni durumu için bir tahmin döndürür. Metin oluşturmaya devam etmek için tahmini iletin ve durumu tekrar girin.

Aşağıdakiler tek adımlı bir tahmin yapar:

class OneStep(tf.keras.Model):
  def __init__(self, model, chars_from_ids, ids_from_chars, temperature=1.0):
    super().__init__()
    self.temperature = temperature
    self.model = model
    self.chars_from_ids = chars_from_ids
    self.ids_from_chars = ids_from_chars

    # Create a mask to prevent "[UNK]" from being generated.
    skip_ids = self.ids_from_chars(['[UNK]'])[:, None]
    sparse_mask = tf.SparseTensor(
        # Put a -inf at each bad index.
        values=[-float('inf')]*len(skip_ids),
        indices=skip_ids,
        # Match the shape to the vocabulary
        dense_shape=[len(ids_from_chars.get_vocabulary())])
    self.prediction_mask = tf.sparse.to_dense(sparse_mask)

  @tf.function
  def generate_one_step(self, inputs, states=None):
    # Convert strings to token IDs.
    input_chars = tf.strings.unicode_split(inputs, 'UTF-8')
    input_ids = self.ids_from_chars(input_chars).to_tensor()

    # Run the model.
    # predicted_logits.shape is [batch, char, next_char_logits]
    predicted_logits, states = self.model(inputs=input_ids, states=states,
                                          return_state=True)
    # Only use the last prediction.
    predicted_logits = predicted_logits[:, -1, :]
    predicted_logits = predicted_logits/self.temperature
    # Apply the prediction mask: prevent "[UNK]" from being generated.
    predicted_logits = predicted_logits + self.prediction_mask

    # Sample the output logits to generate token IDs.
    predicted_ids = tf.random.categorical(predicted_logits, num_samples=1)
    predicted_ids = tf.squeeze(predicted_ids, axis=-1)

    # Convert from token ids to characters
    predicted_chars = self.chars_from_ids(predicted_ids)

    # Return the characters and model state.
    return predicted_chars, states
one_step_model = OneStep(model, chars_from_ids, ids_from_chars)

Biraz metin oluşturmak için bir döngüde çalıştırın. Oluşturulan metne baktığınızda, modelin ne zaman büyük harf kullanacağını, paragraflar oluşturacağını ve Shakespeare benzeri bir yazma kelimesini taklit ettiğini göreceksiniz. Az sayıda eğitim dönemi ile henüz tutarlı cümleler kurmayı öğrenememiştir.

start = time.time()
states = None
next_char = tf.constant(['ROMEO:'])
result = [next_char]

for n in range(1000):
  next_char, states = one_step_model.generate_one_step(next_char, states=states)
  result.append(next_char)

result = tf.strings.join(result)
end = time.time()
print(result[0].numpy().decode('utf-8'), '\n\n' + '_'*80)
print('\nRun time:', end - start)
ROMEO:
It is a very example
Here done to Elcompash of her griefs, wherein Choise,
Without my enemy; you are o'er this scene
Thoughts that sown'd off to have a sufficient mon
hath made it on the people, break our case:
Who inciddst the hour, think you be gone?

MENENIUS:
For what I see, I doubt there was more periol to their friends?

GLOUCESTER:
Have you not hear? the senate pass down forth,
Countenance, prefermants, devised in courtezage,
Of it at punishes, and cry batter King Henry's use!

JULIET:
If they did I but last; I say to thir,
And fly: my vooking in those thing, it brings;
After an act, may stand in my foe instant?

FRIAR LAURENCE:
So much upon the serving-creature.

Second Katharinan,
Save you this young father, news, will kiss
your honour to a covert fance to Farcius' blaze is expiled
till choose and call the foem of cheer himself.
Not so deliver, for this night shall be a cut-out
Yourselfs; as the flowers cannot no: what he pleg-son,
As the pay to her heavy, marches?

MARCIUS:
 

________________________________________________________________________________

Run time: 2.3087921142578125

Eğer sonuçlarını geliştirmek için yapabileceğiniz en kolay şey daha uzun (deneyin için eğitmek EPOCHS = 30 ).

Ayrıca farklı bir başlangıç ​​dizisi deneyebilir, modelin doğruluğunu artırmak için başka bir RNN katmanı eklemeyi deneyebilir veya daha fazla veya daha az rastgele tahminler oluşturmak için sıcaklık parametresini ayarlayabilirsiniz.

Eğer modeli daha hızlı metin oluşturmak istiyorsanız yapabileceğiniz en kolay şey toplu metin kuşaktır. Aşağıdaki örnekte, model, yukarıdaki 1'i üretmek için gereken sürede yaklaşık olarak 5 çıktı üretir.

start = time.time()
states = None
next_char = tf.constant(['ROMEO:', 'ROMEO:', 'ROMEO:', 'ROMEO:', 'ROMEO:'])
result = [next_char]

for n in range(1000):
  next_char, states = one_step_model.generate_one_step(next_char, states=states)
  result.append(next_char)

result = tf.strings.join(result)
end = time.time()
print(result, '\n\n' + '_'*80)
print('\nRun time:', end - start)
tf.Tensor(
[b"ROMEO:\nIt is my daughter, whom thou hast, no, no, what many which ho\ncaused for fear. Then?\n\nFirst Citizen:\nCousin of Buckingham, and therefore wast thou thin,\nBy Jove her thunder, not on him.\n\nFLORIZEL:\nMy lord,\nYou never spow him so perform her life;\nBut had thought the wanted counsel on the world,\nThe baid of old tale from him by foes,\nLike all forms, he doth not the duke well for herself.\nThe sons and fam is strucken murder;\nAnd bless he shall not be long.\nWhereto he better nothing, by the east,\nWas factionary against Exeter!\n\nHERMION:\nWhere is your pain? hings in a soldier.\n\nShepherd:\n'Tis south; I will not go by this; he loves' me\nThough noble Contro's shump.\n\nAEdile:\nHe's sudden; tood my friends are too sun\nPat on him an embastiest York by day, my liege,\nProfesses to follow Marcius.\n\nCOMINIUS:\nIt was come to us!\nBut, our queen, those weeping pay the formers any other;\nAnon even he should seem to dry.\n\nHESS OF YORK:\nMy lord, he both be so farther,\nBut 'tis as banish'd from the mind of "
 b"ROMEO:\nIt is spoke for triumphant garly, fis\nFresh out my daughter and the deed-joy\njeasons that I was lost innation and eyes from the\nthy glims.\n\nFROTH:\nHere comes this way, and sellow'd for and\nspeechange; cry 'D; inchance his down and with the or-house,\nWhere indeed the sedicing scholarging disdains\nDrows you.\n\nAlipan:\nWhere's Clifford; we will confess too,\nOr, by this song, nor pray now what I did\nHer uncle Rivers stands you to take away;\nBut in the like known thereof discresed at his\nheart wept humble as a pitch'd any right.\nWhereto I, 'Hill Henry, and you, my lord,\nKnow't again by Angelo, the head maid\nFalse to another scorns thus daring for\nAn angry ay angry. Veriling you\nThan which you are heart, gave war nor none within;\nTell he that first wretched to her dower, though it begin.\n\nDUKE VINCENTIO:\nWhere is Aufidius sister? how much factos loath\nto pride: King Richard in Bianco's singing.\n\nMARIANA:\nWhy art thou harst: for, to retire yourself\nTo County many thousand humble stains.\nSawnt"
 b"ROMEO:\nSatisfy!\nThink'st thou hast thou out of true applace: throw away\nThe rather for incapab-torment.\n\nGLoUCESTER:\nSo Gaunt in Eye wrong'd, belike.\n\nQUEEN:\n'Tis little friend, thou couldst know; mencle, Clifford.\nDid ut up the flesh; the sons and blubter\nTannot countervail the conquest of thyself.\nBut how must be a king, as hideous ass\nShould you go's assural trembling adjer!\nWhy shall deserve you but assuar their\ncoats of such persons to be your castle.\nCondemning soul to him and heir more than\nHer sups, moresely three women\none and a hongy: you have like his curediar,\nAnd chase him in the infirmine breachs.\n\nKING EDWARD IV:\nCansault thou son? She's a word.\n\nSICINIUS:\nThis shows assurance how the house of love\nLidst both our subjects as the senate's death;\nSoce thou consent to bitter, by the way to life\nBut my entity to give I agree:\nHield!\n\nBUCKINGHAM:\nMy lord, this last out with our complexions\nCherish rooted distapsups and call folls.\n\nLADY ANNE:\nWere he that wonders to us all the chan"
 b"ROMEO:\nI pray you, gentlemen.\n\nJULIET:\nMy lord, gath nothing in Padua for a\npiece of cut as a horseman I please;\nI'll follow what we speak again of love,\nIs broke an oath from false for me.\n\nGLOUCESTER:\nWell, jost ignorant of despite of my grief;\nAnd thus I pity three thou wast born.\n\nQUEEN ELIZABETH:\nWhy have you not done, Henry's coming smiles,\n'Tis like one inferious vengeance condemn'd\nBy Heavens and noblence foldying\nto her honour. what he comes long eate?\n\nHASTINGS:\nGo, get thee even to thus, that flies;\nI would adont the royally out of dist;\nAnd thus I turn and much since that make fair\nSun with such finger in quiet wnat, and Sariant\nShould have been either queen.\n\nISABELLA:\nPetruchio! Who is is the supper venge.\n\nSecond Murderer:\nO looken soul!\n\nA Forders, Earl of Clarence,--here is coming him.\n\nHORTENSIO:\nSay, when you saw you shall bectwary.\n\nCOMINIUS:\nYou have fought it the elder, the\nson: xishonour here the soretire passing slaves.\nAnd in his tidly I brought my good deed,\nAre nev"
 b"ROMEO:\nVillanted the blood reign purpose\nnot more and she would quench it. Should Such a\npentinus lipt from worth of charity.\nHow can we fing it, like a drum of me?\nSpeak, tending, O, how can I have seen your\nsaids, lest the hirs weeping earth, one shall\nIn such as you to bitter, but we east for King of\nThe pretties of his officer: yet your bey,\nThe curn'd deputy nexty. Tybalt, that's\nunfortunage, take this poor delivers to a friend,\nAnd grief hath kept in sign of knotking note.\nWelcome! Saint yet Murderer: to this scoldif cares\nThat I have not in my desire.\nNay, what will you such things prevent it, hands.\n\nKING RICHARD II:\nHow now, by thee!\n\nCLAUDIO:\nNo, good father.\n\nDUKE VINCENTIO:\nHow now, is gone to Raptatur, add, took fortune between\nmy life for time put forth parture most straitle queen's.\n\nHENRY BOLINGBROKE:\nUrge in any, unhappy by this news,\nWhilst thou lies She not remain, as if\nher fortune is not so rise report the queen?\n\nGLOUCESTER:\nStand up, Oncring me?\n\nLADYARAN:\n\nHERMIONE:\nN"], shape=(5,), dtype=string) 

________________________________________________________________________________

Run time: 2.1990060806274414

Jeneratörü dışa aktar

Bu tek aşamalı modeli kolaylıkla alınabilir kaydedilir ve restore Bir yerde kullanmak için izin tf.saved_model kabul edilir.

tf.saved_model.save(one_step_model, 'one_step')
one_step_reloaded = tf.saved_model.load('one_step')
WARNING:tensorflow:Skipping full serialization of Keras layer <__main__.OneStep object at 0x7fdfad429d90>, because it is not built.
2021-08-11 18:26:53.785069: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
WARNING:absl:Found untraced functions such as gru_cell_layer_call_fn, gru_cell_layer_call_and_return_conditional_losses, gru_cell_layer_call_fn, gru_cell_layer_call_and_return_conditional_losses, gru_cell_layer_call_and_return_conditional_losses while saving (showing 5 of 5). These functions will not be directly callable after loading.
INFO:tensorflow:Assets written to: one_step/assets
INFO:tensorflow:Assets written to: one_step/assets
states = None
next_char = tf.constant(['ROMEO:'])
result = [next_char]

for n in range(100):
  next_char, states = one_step_reloaded.generate_one_step(next_char, states=states)
  result.append(next_char)

print(tf.strings.join(result)[0].numpy().decode("utf-8"))
ROMEO:
Be a booqued banish'd: sly us or old
Yeed Margaret: and therefore follow'd there?

BUCKINGHAM:
Why,

Gelişmiş: Özelleştirilmiş Eğitim

Yukarıdaki eğitim prosedürü basittir, ancak size fazla kontrol sağlamaz. Kötü tahminlerin modele geri beslenmesini önleyen öğretmen zorlamasını kullanır, böylece model asla hatalardan kurtulmayı öğrenmez.

Artık modeli manuel olarak nasıl çalıştıracağınızı gördüğünüze göre, eğitim döngüsünü uygulayacaksınız. Örneğin, modelin açık döngü çıkışı stabilize yardımına müfredat öğrenmeyi uygulamak istiyorsanız, bu bir başlangıç noktası verir.

Özel bir eğitim döngüsünün en önemli kısmı, tren adımı işlevidir.

Kullanım tf.GradientTape geçişlerini izlemek için. Sen okuyarak bu yaklaşımı hakkında daha fazla bilgi edinebilirsiniz istekli yürütme kılavuzu .

Temel prosedür:

  1. Modeli yürütün ve altında kaybını hesaplamak tf.GradientTape .
  2. Güncellemeleri hesaplayın ve optimize ediciyi kullanarak bunları modele uygulayın.
class CustomTraining(MyModel):
  @tf.function
  def train_step(self, inputs):
      inputs, labels = inputs
      with tf.GradientTape() as tape:
          predictions = self(inputs, training=True)
          loss = self.loss(labels, predictions)
      grads = tape.gradient(loss, model.trainable_variables)
      self.optimizer.apply_gradients(zip(grads, model.trainable_variables))

      return {'loss': loss}

Yukarıdaki uygulama train_step yöntemiyle aşağıdaki keras' train_step kuralları . Bu isteğe bağlıdır, ancak bu tren adımının davranışını değiştirmek ve hala keras' kullanmasına izin verir Model.compile ve Model.fit yöntemleri.

model = CustomTraining(
    vocab_size=len(ids_from_chars.get_vocabulary()),
    embedding_dim=embedding_dim,
    rnn_units=rnn_units)
model.compile(optimizer = tf.keras.optimizers.Adam(),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True))
model.fit(dataset, epochs=1)
172/172 [==============================] - 7s 23ms/step - loss: 2.7296
<keras.callbacks.History at 0x7fdfad7bf090>

Veya daha fazla kontrole ihtiyacınız varsa, kendi eksiksiz özel eğitim döngünüzü yazabilirsiniz:

EPOCHS = 10

mean = tf.metrics.Mean()

for epoch in range(EPOCHS):
    start = time.time()

    mean.reset_states()
    for (batch_n, (inp, target)) in enumerate(dataset):
        logs = model.train_step([inp, target])
        mean.update_state(logs['loss'])

        if batch_n % 50 == 0:
            template = f"Epoch {epoch+1} Batch {batch_n} Loss {logs['loss']:.4f}"
            print(template)

    # saving (checkpoint) the model every 5 epochs
    if (epoch + 1) % 5 == 0:
        model.save_weights(checkpoint_prefix.format(epoch=epoch))

    print()
    print(f'Epoch {epoch+1} Loss: {mean.result().numpy():.4f}')
    print(f'Time taken for 1 epoch {time.time() - start:.2f} sec')
    print("_"*80)

model.save_weights(checkpoint_prefix.format(epoch=epoch))
Epoch 1 Batch 0 Loss 2.1729
Epoch 1 Batch 50 Loss 2.0531
Epoch 1 Batch 100 Loss 1.9573
Epoch 1 Batch 150 Loss 1.8028

Epoch 1 Loss: 1.9959
Time taken for 1 epoch 5.83 sec
________________________________________________________________________________
Epoch 2 Batch 0 Loss 1.8247
Epoch 2 Batch 50 Loss 1.7950
Epoch 2 Batch 100 Loss 1.7317
Epoch 2 Batch 150 Loss 1.6410

Epoch 2 Loss: 1.7202
Time taken for 1 epoch 5.28 sec
________________________________________________________________________________
Epoch 3 Batch 0 Loss 1.6101
Epoch 3 Batch 50 Loss 1.5863
Epoch 3 Batch 100 Loss 1.5252
Epoch 3 Batch 150 Loss 1.5194

Epoch 3 Loss: 1.5582
Time taken for 1 epoch 5.23 sec
________________________________________________________________________________
Epoch 4 Batch 0 Loss 1.4622
Epoch 4 Batch 50 Loss 1.4623
Epoch 4 Batch 100 Loss 1.4729
Epoch 4 Batch 150 Loss 1.4334

Epoch 4 Loss: 1.4580
Time taken for 1 epoch 5.30 sec
________________________________________________________________________________
Epoch 5 Batch 0 Loss 1.4144
Epoch 5 Batch 50 Loss 1.4157
Epoch 5 Batch 100 Loss 1.3952
Epoch 5 Batch 150 Loss 1.3634

Epoch 5 Loss: 1.3902
Time taken for 1 epoch 5.48 sec
________________________________________________________________________________
Epoch 6 Batch 0 Loss 1.3419
Epoch 6 Batch 50 Loss 1.3228
Epoch 6 Batch 100 Loss 1.3308
Epoch 6 Batch 150 Loss 1.3092

Epoch 6 Loss: 1.3365
Time taken for 1 epoch 5.22 sec
________________________________________________________________________________
Epoch 7 Batch 0 Loss 1.3353
Epoch 7 Batch 50 Loss 1.2958
Epoch 7 Batch 100 Loss 1.2993
Epoch 7 Batch 150 Loss 1.3049

Epoch 7 Loss: 1.2915
Time taken for 1 epoch 5.33 sec
________________________________________________________________________________
Epoch 8 Batch 0 Loss 1.2323
Epoch 8 Batch 50 Loss 1.2712
Epoch 8 Batch 100 Loss 1.2089
Epoch 8 Batch 150 Loss 1.2661

Epoch 8 Loss: 1.2513
Time taken for 1 epoch 5.21 sec
________________________________________________________________________________
Epoch 9 Batch 0 Loss 1.2154
Epoch 9 Batch 50 Loss 1.2268
Epoch 9 Batch 100 Loss 1.2334
Epoch 9 Batch 150 Loss 1.2292

Epoch 9 Loss: 1.2124
Time taken for 1 epoch 5.24 sec
________________________________________________________________________________
Epoch 10 Batch 0 Loss 1.1712
Epoch 10 Batch 50 Loss 1.1542
Epoch 10 Batch 100 Loss 1.1887
Epoch 10 Batch 150 Loss 1.2040

Epoch 10 Loss: 1.1734
Time taken for 1 epoch 5.56 sec
________________________________________________________________________________