tf.compat.v1.layers.max_pooling2d
bookmark_borderbookmark
Stay organized with collections
Save and categorize content based on your preferences.
Max pooling layer for 2D inputs (e.g. images).
tf.compat.v1.layers.max_pooling2d(
inputs,
pool_size,
strides,
padding='valid',
data_format='channels_last',
name=None
)
Description
Args |
inputs
|
The tensor over which to pool. Must have rank 4.
|
pool_size
|
An integer or tuple/list of 2 integers: (pool_height,
pool_width) specifying the size of the pooling window.
Can be a single integer to specify the same value for
all spatial dimensions.
|
strides
|
An integer or tuple/list of 2 integers,
specifying the strides of the pooling operation.
Can be a single integer to specify the same value for
all spatial dimensions.
|
padding
|
A string. The padding method, either 'valid' or 'same'.
Case-insensitive.
|
data_format
|
A string. The ordering of the dimensions in the inputs.
channels_last (default) and channels_first are supported.
channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to
inputs with shape (batch, channels, height, width) .
|
name
|
A string, the name of the layer.
|
Raises |
ValueError
|
if eager execution is enabled.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2023-10-06 UTC."],[],[],null,["# tf.compat.v1.layers.max_pooling2d\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v2.12.0/keras/legacy_tf_layers/pooling.py#L586-L672) |\n\nMax pooling layer for 2D inputs (e.g. images). \n\n tf.compat.v1.layers.max_pooling2d(\n inputs,\n pool_size,\n strides,\n padding='valid',\n data_format='channels_last',\n name=None\n )\n\n\u003cbr /\u003e\n\nMigrate to TF2\n--------------\n\n\u003cbr /\u003e\n\n| **Caution:** This API was designed for TensorFlow v1. Continue reading for details on how to migrate from this API to a native TensorFlow v2 equivalent. See the [TensorFlow v1 to TensorFlow v2 migration guide](https://www.tensorflow.org/guide/migrate) for instructions on how to migrate the rest of your code.\n\nThis API is a legacy api that is only compatible with eager execution and\n[`tf.function`](../../../../tf/function) if you combine it with\n[`tf.compat.v1.keras.utils.track_tf1_style_variables`](../../../../tf/compat/v1/keras/utils/track_tf1_style_variables)\n\nPlease refer to [tf.layers model mapping section of the migration guide](https://www.tensorflow.org/guide/migrate/model_mapping)\nto learn how to use your TensorFlow v1 model in TF2 with Keras.\n\nThe corresponding TensorFlow v2 layer is\n[`tf.keras.layers.MaxPooling2D`](../../../../tf/keras/layers/MaxPool2D).\n\n#### Structural Mapping to Native TF2\n\nNone of the supported arguments have changed name.\n\nBefore: \n\n y = tf.compat.v1.layers.max_pooling2d(x, pool_size=2, strides=2)\n\nAfter:\n\nTo migrate code using TF1 functional layers use the [Keras Functional API](https://www.tensorflow.org/guide/keras/functional): \n\n x = tf.keras.Input((28, 28, 1))\n y = tf.keras.layers.MaxPooling2D(pool_size=2, strides=2)(x)\n model = tf.keras.Model(x, y)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\nDescription\n-----------\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `inputs` | The tensor over which to pool. Must have rank 4. |\n| `pool_size` | An integer or tuple/list of 2 integers: (pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions. |\n| `strides` | An integer or tuple/list of 2 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions. |\n| `padding` | A string. The padding method, either 'valid' or 'same'. Case-insensitive. |\n| `data_format` | A string. The ordering of the dimensions in the inputs. `channels_last` (default) and `channels_first` are supported. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. |\n| `name` | A string, the name of the layer. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| Output tensor. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|--------------------------------|\n| `ValueError` | if eager execution is enabled. |\n\n\u003cbr /\u003e"]]