View source on GitHub |
Compute set union of elements in last dimension of a
and b
.
tf.sets.union(
a, b, validate_indices=True
)
All but the last dimension of a
and b
must match.
Example:
import tensorflow as tf
import collections
# [[{1, 2}, {3}], [{4}, {5, 6}]]
a = collections.OrderedDict([
((0, 0, 0), 1),
((0, 0, 1), 2),
((0, 1, 0), 3),
((1, 0, 0), 4),
((1, 1, 0), 5),
((1, 1, 1), 6),
])
a = tf.sparse.SparseTensor(list(a.keys()), list(a.values()),
dense_shape=[2, 2, 2])
# [[{1, 3}, {2}], [{4, 5}, {5, 6, 7, 8}]]
b = collections.OrderedDict([
((0, 0, 0), 1),
((0, 0, 1), 3),
((0, 1, 0), 2),
((1, 0, 0), 4),
((1, 0, 1), 5),
((1, 1, 0), 5),
((1, 1, 1), 6),
((1, 1, 2), 7),
((1, 1, 3), 8),
])
b = tf.sparse.SparseTensor(list(b.keys()), list(b.values()),
dense_shape=[2, 2, 4])
# `set_union` is applied to each aligned pair of sets.
tf.sets.union(a, b)
# The result will be a equivalent to either of:
#
# np.array([[{1, 2, 3}, {2, 3}], [{4, 5}, {5, 6, 7, 8}]])
#
# collections.OrderedDict([
# ((0, 0, 0), 1),
# ((0, 0, 1), 2),
# ((0, 0, 2), 3),
# ((0, 1, 0), 2),
# ((0, 1, 1), 3),
# ((1, 0, 0), 4),
# ((1, 0, 1), 5),
# ((1, 1, 0), 5),
# ((1, 1, 1), 6),
# ((1, 1, 2), 7),
# ((1, 1, 3), 8),
# ])
Returns | |
---|---|
A SparseTensor whose shape is the same rank as a and b , and all but
the last dimension the same. Elements along the last dimension contain the
unions.
|