Questa pagina è stata tradotta dall'API Cloud Translation.
Switch to English

Set di dati TensorFlow

TFDS fornisce una raccolta di set di dati pronti per l'uso da utilizzare con TensorFlow, Jax e altri framework di Machine Learning.

Gestisce il download e la preparazione dei dati in modo deterministico e la costruzione di un tf.data.Dataset (o np.array ).

Visualizza su TensorFlow.org Esegui in Google Colab Visualizza sorgente su GitHub

Installazione

TFDS esiste in due pacchetti:

  • pip install tensorflow-datasets : la versione stabile, rilasciata ogni pochi mesi.
  • pip install tfds-nightly : rilasciato ogni giorno, contiene le ultime versioni dei set di dati.

Questo colab usa tfds-nightly :

pip install -q tfds-nightly tensorflow matplotlib
WARNING: You are using pip version 20.2.2; however, version 20.2.3 is available.
You should consider upgrading via the '/tmpfs/src/tf_docs_env/bin/python -m pip install --upgrade pip' command.

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf

import tensorflow_datasets as tfds

Trova i set di dati disponibili

Tutti i tfds.core.DatasetBuilder di set di dati sono una sottoclasse di tfds.core.DatasetBuilder . Per ottenere l'elenco dei builder disponibili, usa tfds.list_builders() o guarda il nostro catalogo .

tfds.list_builders()
['abstract_reasoning',
 'aeslc',
 'aflw2k3d',
 'ag_news_subset',
 'ai2_arc',
 'ai2_arc_with_ir',
 'amazon_us_reviews',
 'anli',
 'arc',
 'bair_robot_pushing_small',
 'bccd',
 'beans',
 'big_patent',
 'bigearthnet',
 'billsum',
 'binarized_mnist',
 'binary_alpha_digits',
 'blimp',
 'bool_q',
 'c4',
 'caltech101',
 'caltech_birds2010',
 'caltech_birds2011',
 'cars196',
 'cassava',
 'cats_vs_dogs',
 'celeb_a',
 'celeb_a_hq',
 'cfq',
 'chexpert',
 'cifar10',
 'cifar100',
 'cifar10_1',
 'cifar10_corrupted',
 'citrus_leaves',
 'cityscapes',
 'civil_comments',
 'clevr',
 'clic',
 'clinc_oos',
 'cmaterdb',
 'cnn_dailymail',
 'coco',
 'coco_captions',
 'coil100',
 'colorectal_histology',
 'colorectal_histology_large',
 'common_voice',
 'coqa',
 'cos_e',
 'cosmos_qa',
 'covid19sum',
 'crema_d',
 'curated_breast_imaging_ddsm',
 'cycle_gan',
 'deep_weeds',
 'definite_pronoun_resolution',
 'dementiabank',
 'diabetic_retinopathy_detection',
 'div2k',
 'dmlab',
 'downsampled_imagenet',
 'dsprites',
 'dtd',
 'duke_ultrasound',
 'emnist',
 'eraser_multi_rc',
 'esnli',
 'eurosat',
 'fashion_mnist',
 'flic',
 'flores',
 'food101',
 'forest_fires',
 'fuss',
 'gap',
 'geirhos_conflict_stimuli',
 'genomics_ood',
 'german_credit_numeric',
 'gigaword',
 'glue',
 'goemotions',
 'gpt3',
 'groove',
 'gtzan',
 'gtzan_music_speech',
 'higgs',
 'horses_or_humans',
 'i_naturalist2017',
 'imagenet2012',
 'imagenet2012_corrupted',
 'imagenet2012_real',
 'imagenet2012_subset',
 'imagenet_a',
 'imagenet_r',
 'imagenet_resized',
 'imagenet_v2',
 'imagenette',
 'imagewang',
 'imdb_reviews',
 'irc_disentanglement',
 'iris',
 'kitti',
 'kmnist',
 'lfw',
 'librispeech',
 'librispeech_lm',
 'libritts',
 'ljspeech',
 'lm1b',
 'lost_and_found',
 'lsun',
 'malaria',
 'math_dataset',
 'mctaco',
 'mnist',
 'mnist_corrupted',
 'movie_lens',
 'movie_rationales',
 'movielens',
 'moving_mnist',
 'multi_news',
 'multi_nli',
 'multi_nli_mismatch',
 'natural_questions',
 'newsroom',
 'nsynth',
 'nyu_depth_v2',
 'omniglot',
 'open_images_challenge2019_detection',
 'open_images_v4',
 'openbookqa',
 'opinion_abstracts',
 'opinosis',
 'opus',
 'oxford_flowers102',
 'oxford_iiit_pet',
 'para_crawl',
 'patch_camelyon',
 'paws_wiki',
 'paws_x_wiki',
 'pet_finder',
 'pg19',
 'places365_small',
 'plant_leaves',
 'plant_village',
 'plantae_k',
 'qa4mre',
 'qasc',
 'quickdraw_bitmap',
 'radon',
 'reddit',
 'reddit_disentanglement',
 'reddit_tifu',
 'resisc45',
 'robonet',
 'rock_paper_scissors',
 'rock_you',
 'salient_span_wikipedia',
 'samsum',
 'savee',
 'scan',
 'scene_parse150',
 'scicite',
 'scientific_papers',
 'sentiment140',
 'shapes3d',
 'smallnorb',
 'snli',
 'so2sat',
 'speech_commands',
 'spoken_digit',
 'squad',
 'stanford_dogs',
 'stanford_online_products',
 'starcraft_video',
 'stl10',
 'sun397',
 'super_glue',
 'svhn_cropped',
 'ted_hrlr_translate',
 'ted_multi_translate',
 'tedlium',
 'tf_flowers',
 'the300w_lp',
 'tiny_shakespeare',
 'titanic',
 'trec',
 'trivia_qa',
 'tydi_qa',
 'uc_merced',
 'ucf101',
 'vctk',
 'vgg_face2',
 'visual_domain_decathlon',
 'voc',
 'voxceleb',
 'voxforge',
 'waymo_open_dataset',
 'web_questions',
 'wider_face',
 'wiki40b',
 'wikihow',
 'wikipedia',
 'wikipedia_toxicity_subtypes',
 'wine_quality',
 'winogrande',
 'wmt14_translate',
 'wmt15_translate',
 'wmt16_translate',
 'wmt17_translate',
 'wmt18_translate',
 'wmt19_translate',
 'wmt_t2t_translate',
 'wmt_translate',
 'wordnet',
 'xnli',
 'xquad',
 'xsum',
 'yelp_polarity_reviews',
 'yes_no']

Carica un set di dati

Il modo più semplice per caricare un set di dati è tfds.load . Lo farà:

  1. Scarica i dati e salvalo come file tfrecord .
  2. Carica il tfrecord e crea il tf.data.Dataset .
ds = tfds.load('mnist', split='train', shuffle_files=True)
assert isinstance(ds, tf.data.Dataset)
print(ds)
WARNING:absl:Dataset mnist is hosted on GCS. It will automatically be downloaded to your
local data directory. If you'd instead prefer to read directly from our public
GCS bucket (recommended if you're running on GCP), you can instead pass
`try_gcs=True` to `tfds.load` or set `data_dir=gs://tfds-data/datasets`.


Downloading and preparing dataset mnist/3.0.1 (download: 11.06 MiB, generated: 21.00 MiB, total: 32.06 MiB) to /home/kbuilder/tensorflow_datasets/mnist/3.0.1...
Dataset mnist downloaded and prepared to /home/kbuilder/tensorflow_datasets/mnist/3.0.1. Subsequent calls will reuse this data.
<_OptionsDataset shapes: {image: (28, 28, 1), label: ()}, types: {image: tf.uint8, label: tf.int64}>

Alcuni argomenti comuni:

  • split= : quale divisione leggere (ad es. 'train' , ['train', 'test'] , 'train[80%:]' , ...). Consulta la nostra guida all'API divisa .
  • shuffle_files= : Controlla se mescolare i file tra ogni epoca (TFDS memorizza grandi set di dati in più file più piccoli).
  • data_dir= : posizione in cui viene salvato il set di dati (il valore predefinito è ~/tensorflow_datasets/ )
  • with_info=True : restituisce tfds.core.DatasetInfo contenente i metadati del set di dati
  • download=False : disabilita il download

tfds.load è un sottile wrapper attorno a tfds.core.DatasetBuilder . Puoi ottenere lo stesso output utilizzando l'API tfds.core.DatasetBuilder :

builder = tfds.builder('mnist')
# 1. Create the tfrecord files (no-op if already exists)
builder.download_and_prepare()
# 2. Load the `tf.data.Dataset`
ds = builder.as_dataset(split='train', shuffle_files=True)
print(ds)
<_OptionsDataset shapes: {image: (28, 28, 1), label: ()}, types: {image: tf.uint8, label: tf.int64}>

Ripeti su un set di dati

Come detto

Per impostazione predefinita, l'oggetto tf.data.Dataset contiene un dict di tf.Tensor s:

ds = tfds.load('mnist', split='train')
ds = ds.take(1)  # Only take a single example

for example in ds:  # example is `{'image': tf.Tensor, 'label': tf.Tensor}`
  print(list(example.keys()))
  image = example["image"]
  label = example["label"]
  print(image.shape, label)
['image', 'label']
(28, 28, 1) tf.Tensor(4, shape=(), dtype=int64)

Come tupla ( as_supervised=True )

Utilizzando as_supervised=True , è possibile ottenere una tupla (features, label) invece per i set di dati supervisionati.

ds = tfds.load('mnist', split='train', as_supervised=True)
ds = ds.take(1)

for image, label in ds:  # example is (image, label)
  print(image.shape, label)
(28, 28, 1) tf.Tensor(4, shape=(), dtype=int64)

Come numpy ( tfds.as_numpy )

Utilizza tfds.as_numpy per convertire:

ds = tfds.load('mnist', split='train', as_supervised=True)
ds = ds.take(1)

for image, label in tfds.as_numpy(ds):
  print(type(image), type(label), label)
<class 'numpy.ndarray'> <class 'numpy.int64'> 4

Come tf.Tensor in batch ( batch_size=-1 )

Utilizzando batch_size=-1 , è possibile caricare l'intero set di dati in un unico batch.

tfds.load restituirà un dict ( tuple con as_supervised=True ) di tf.Tensor ( np.array con tfds.as_numpy ).

Fai attenzione che il tuo set di dati possa entrare nella memoria e che tutti gli esempi abbiano la stessa forma.

image, label = tfds.as_numpy(tfds.load(
    'mnist',
    split='test', 
    batch_size=-1, 
    as_supervised=True,
))

print(type(image), image.shape)
<class 'numpy.ndarray'> (10000, 28, 28, 1)

Crea una pipeline end-to-end

Per andare oltre, puoi guardare:

Visualizzazione

tfds.as_dataframe

tf.data.Dataset oggetti tf.data.Dataset possono essere convertiti in pandas.DataFrame con tfds.as_dataframe per essere visualizzati su Colab .

  • Aggiungi tfds.core.DatasetInfo come secondo argomento di tfds.as_dataframe per visualizzare immagini, audio, testi, video, ...
  • Usa ds.take(x) per visualizzare solo i primi x esempi. pandas.DataFrame caricherà l'intero set di dati in memoria e può essere molto costoso da visualizzare.
ds, info = tfds.load('mnist', split='train', with_info=True)

tfds.as_dataframe(ds.take(4), info)

tfds.show_examples

Per immagini con tfds.show_examples (solo i set di dati immagine supportati ora):

ds, info = tfds.load('mnist', split='train', with_info=True)

fig = tfds.show_examples(ds, info)

png

Accedi ai metadati del set di dati

Tutti i builder includono un oggetto tfds.core.DatasetInfo contenente i metadati del set di dati.

Vi si può accedere tramite:

ds, info = tfds.load('mnist', with_info=True)
builder = tfds.builder('mnist')
info = builder.info

Le informazioni sul set di dati contengono informazioni aggiuntive sul set di dati (versione, citazione, homepage, descrizione, ...).

print(info)
tfds.core.DatasetInfo(
    name='mnist',
    version=3.0.1,
    description='The MNIST database of handwritten digits.',
    homepage='http://yann.lecun.com/exdb/mnist/',
    features=FeaturesDict({
        'image': Image(shape=(28, 28, 1), dtype=tf.uint8),
        'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=10),
    }),
    total_num_examples=70000,
    splits={
        'test': 10000,
        'train': 60000,
    },
    supervised_keys=('image', 'label'),
    citation="""@article{lecun2010mnist,
      title={MNIST handwritten digit database},
      author={LeCun, Yann and Cortes, Corinna and Burges, CJ},
      journal={ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist},
      volume={2},
      year={2010}
    }""",
    redistribution_info=,
)


Presenta metadati (nomi di etichette, forma dell'immagine, ...)

Accedi a tfds.features.FeatureDict :

info.features
FeaturesDict({
    'image': Image(shape=(28, 28, 1), dtype=tf.uint8),
    'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=10),
})

Numero di classi, nomi di etichette:

print(info.features["label"].num_classes)
print(info.features["label"].names)
print(info.features["label"].int2str(7))  # Human readable version (8 -> 'cat')
print(info.features["label"].str2int('7'))
10
['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
7
7

Forme, tipi:

print(info.features.shape)
print(info.features.dtype)
print(info.features['image'].shape)
print(info.features['image'].dtype)
{'image': (28, 28, 1), 'label': ()}
{'image': tf.uint8, 'label': tf.int64}
(28, 28, 1)
<dtype: 'uint8'>

Metadati divisi (ad es. Nomi divisi, numero di esempi, ...)

Accedi a tfds.core.SplitDict :

print(info.splits)
{'test': <tfds.core.SplitInfo num_examples=10000>, 'train': <tfds.core.SplitInfo num_examples=60000>}

Divisioni disponibili:

print(list(info.splits.keys()))
['test', 'train']

Ottieni informazioni sulla divisione individuale:

print(info.splits['train'].num_examples)
print(info.splits['train'].filenames)
print(info.splits['train'].num_shards)
60000
['mnist-train.tfrecord-00000-of-00001']
1

Funziona anche con l'API subsplit:

print(info.splits['train[15%:75%]'].num_examples)
print(info.splits['train[15%:75%]'].file_instructions)
36000
[FileInstruction(filename='mnist-train.tfrecord-00000-of-00001', skip=9000, take=36000, num_examples=36000)]

Citazione

Se utilizzi tensorflow-datasets per un articolo, includi la seguente citazione, oltre a qualsiasi citazione specifica per i set di dati utilizzati (che può essere trovata nel catalogo del set di dati ).

@misc{TFDS,
  title = { {TensorFlow Datasets}, A collection of ready-to-use datasets},
  howpublished = {\url{https://www.tensorflow.org/datasets} },
}