Apprentissage fédéré à grand modèle efficace pour le client via federated_select et agrégation clairsemée

Voir sur TensorFlow.org Exécuter dans Google Colab Voir la source sur GitHub Télécharger le cahier

Ce tutoriel montre comment TFF peut être utilisé pour former un modèle très important où chaque appareil client uniquement téléchargements et mises à jour une petite partie du modèle, en utilisant tff.federated_select et l' agrégation. Clairsemée Bien que ce tutoriel est assez autonome, le tff.federated_select tutoriel et algorithmes FL personnalisés tutoriel offrent de bonnes introductions à quelques - unes des techniques utilisées ici.

Concrètement, dans ce didacticiel, nous considérons la régression logistique pour la classification multi-étiquettes, en prédisant quelles "étiquettes" sont associées à une chaîne de texte basée sur une représentation de caractéristiques en forme de sac de mots. Fait important, les coûts de communication et de calcul du côté client sont contrôlés par une constante fixe ( MAX_TOKENS_SELECTED_PER_CLIENT ), et ne pas à l' échelle de la taille globale du vocabulaire, ce qui pourrait être extrêmement important dans un contexte pratique.

!pip install --quiet --upgrade tensorflow-federated-nightly
!pip install --quiet --upgrade nest-asyncio

import nest_asyncio
nest_asyncio.apply()
import collections
import itertools
import numpy as np

from typing import Callable, List, Tuple

import tensorflow as tf
import tensorflow_federated as tff

Chaque client federated_select les lignes des poids de modèle pour au plus ce nombre de jetons uniques. Cette-limites supérieures de la taille du modèle local du client et la quantité de serveur -> client ( federated_select ) et client -> serveur (federated_aggregate ) communication effectuée.

Ce didacticiel devrait toujours s'exécuter correctement même si vous définissez cette valeur sur 1 (en vous assurant que tous les jetons de chaque client ne sont pas sélectionnés) ou sur une valeur élevée, bien que la convergence du modèle puisse être affectée.

MAX_TOKENS_SELECTED_PER_CLIENT = 6

Nous définissons également quelques constantes pour différents types. Pour cette colab, un jeton est un identificateur de nombre entier pour un mot après l' analyse du jeu de données.

# There are some constraints on types
# here that will require some explicit type conversions:
#    - `tff.federated_select` requires int32
#    - `tf.SparseTensor` requires int64 indices.
TOKEN_DTYPE = tf.int64
SELECT_KEY_DTYPE = tf.int32

# Type for counts of token occurences.
TOKEN_COUNT_DTYPE = tf.int32

# A sparse feature vector can be thought of as a map
# from TOKEN_DTYPE to FEATURE_DTYPE. 
# Our features are {0, 1} indicators, so we could potentially
# use tf.int8 as an optimization.
FEATURE_DTYPE = tf.int32

Configuration du problème : jeu de données et modèle

Nous construisons un petit jeu de données de jouets pour une expérimentation facile dans ce didacticiel. Cependant, le format de l'ensemble de données est compatible avec Federated StackOverflow et le prétraitement et l' architecture du modèle sont adoptées à partir du problème de prédiction tag StackOverflow d' Adaptive Optimization fédérée .

Analyse et pré-traitement de l'ensemble de données

NUM_OOV_BUCKETS = 1

BatchType = collections.namedtuple('BatchType', ['tokens', 'tags'])

def build_to_ids_fn(word_vocab: List[str],
                    tag_vocab: List[str]) -> Callable[[tf.Tensor], tf.Tensor]:
  """Constructs a function mapping examples to sequences of token indices."""
  word_table_values = np.arange(len(word_vocab), dtype=np.int64)
  word_table = tf.lookup.StaticVocabularyTable(
      tf.lookup.KeyValueTensorInitializer(word_vocab, word_table_values),
      num_oov_buckets=NUM_OOV_BUCKETS)

  tag_table_values = np.arange(len(tag_vocab), dtype=np.int64)
  tag_table = tf.lookup.StaticVocabularyTable(
      tf.lookup.KeyValueTensorInitializer(tag_vocab, tag_table_values),
      num_oov_buckets=NUM_OOV_BUCKETS)

  def to_ids(example):
    """Converts a Stack Overflow example to a bag-of-words/tags format."""
    sentence = tf.strings.join([example['tokens'], example['title']],
                               separator=' ')

    # We represent that label (output tags) densely.
    raw_tags = example['tags']
    tags = tf.strings.split(raw_tags, sep='|')
    tags = tag_table.lookup(tags)
    tags, _ = tf.unique(tags)
    tags = tf.one_hot(tags, len(tag_vocab) + NUM_OOV_BUCKETS)
    tags = tf.reduce_max(tags, axis=0)

    # We represent the features as a SparseTensor of {0, 1}s.
    words = tf.strings.split(sentence)
    tokens = word_table.lookup(words)
    tokens, _ = tf.unique(tokens)
    # Note:  We could choose to use the word counts as the feature vector
    # instead of just {0, 1} values (see tf.unique_with_counts).
    tokens = tf.reshape(tokens, shape=(tf.size(tokens), 1))
    tokens_st = tf.SparseTensor(
        tokens,
        tf.ones(tf.size(tokens), dtype=FEATURE_DTYPE),
        dense_shape=(len(word_vocab) + NUM_OOV_BUCKETS,))
    tokens_st = tf.sparse.reorder(tokens_st)

    return BatchType(tokens_st, tags)

  return to_ids
def build_preprocess_fn(word_vocab, tag_vocab):

  @tf.function
  def preprocess_fn(dataset):
    to_ids = build_to_ids_fn(word_vocab, tag_vocab)
    # We *don't* shuffle in order to make this colab deterministic for
    # easier testing and reproducibility.
    # But real-world training should use `.shuffle()`.
    return dataset.map(to_ids, num_parallel_calls=tf.data.experimental.AUTOTUNE)

  return preprocess_fn

Un petit jeu de données de jouets

Nous construisons un petit jeu de données de jouets avec un vocabulaire global de 12 mots et 3 clients. Cet exemple minuscule est utile pour tester les cas de pointe (par exemple, nous avons deux clients avec moins de MAX_TOKENS_SELECTED_PER_CLIENT = 6 jetons distincts, et un plus) et le développement du code.

Cependant, les cas d'utilisation réels de cette approche seraient des vocabulaires mondiaux de 10 millions ou plus, avec peut-être des milliers de jetons distincts apparaissant sur chaque client. Étant donné que le format des données est la même, l'extension des problèmes de banc d' essai plus réalistes, par exemple le tff.simulation.datasets.stackoverflow.load_data() ensemble de données, devrait être simple.

Tout d'abord, nous définissons nos vocabulaires de mots et d'étiquettes.

# Features
FRUIT_WORDS = ['apple', 'orange', 'pear', 'kiwi']
VEGETABLE_WORDS = ['carrot', 'broccoli', 'arugula', 'peas']
FISH_WORDS = ['trout', 'tuna', 'cod', 'salmon']
WORD_VOCAB = FRUIT_WORDS + VEGETABLE_WORDS + FISH_WORDS

# Labels
TAG_VOCAB = ['FRUIT', 'VEGETABLE', 'FISH']

Maintenant, nous créons 3 clients avec de petits ensembles de données locaux. Si vous exécutez ce tutoriel dans colab, il peut être utile d'utiliser la fonctionnalité "Cellule miroir dans l'onglet" pour épingler cette cellule et sa sortie afin d'interpréter/vérifier la sortie des fonctions développées ci-dessous.

preprocess_fn = build_preprocess_fn(WORD_VOCAB, TAG_VOCAB)


def make_dataset(raw):
  d = tf.data.Dataset.from_tensor_slices(
      # Matches the StackOverflow formatting
      collections.OrderedDict(
          tokens=tf.constant([t[0] for t in raw]),
          tags=tf.constant([t[1] for t in raw]),
          title=['' for _ in raw]))
  d = preprocess_fn(d)
  return d


# 4 distinct tokens
CLIENT1_DATASET = make_dataset([
    ('apple orange apple orange', 'FRUIT'),
    ('carrot trout', 'VEGETABLE|FISH'),
    ('orange apple', 'FRUIT'),
    ('orange', 'ORANGE|CITRUS')  # 2 OOV tag
])

# 6 distinct tokens
CLIENT2_DATASET = make_dataset([
    ('pear cod', 'FRUIT|FISH'),
    ('arugula peas', 'VEGETABLE'),
    ('kiwi pear', 'FRUIT'),
    ('sturgeon', 'FISH'),  # OOV word
    ('sturgeon bass', 'FISH')  # 2 OOV words
])

# A client with all possible words & tags (13 distinct tokens).
# With MAX_TOKENS_SELECTED_PER_CLIENT = 6, we won't download the model
# slices for all tokens that occur on this client.
CLIENT3_DATASET = make_dataset([
    (' '.join(WORD_VOCAB + ['oovword']), '|'.join(TAG_VOCAB)),
    # Mathe the OOV token and 'salmon' occur in the largest number
    # of examples on this client:
    ('salmon oovword', 'FISH|OOVTAG')
])

print('Word vocab')
for i, word in enumerate(WORD_VOCAB):
  print(f'{i:2d} {word}')

print('\nTag vocab')
for i, tag in enumerate(TAG_VOCAB):
  print(f'{i:2d} {tag}')
Word vocab
 0 apple
 1 orange
 2 pear
 3 kiwi
 4 carrot
 5 broccoli
 6 arugula
 7 peas
 8 trout
 9 tuna
10 cod
11 salmon

Tag vocab
 0 FRUIT
 1 VEGETABLE
 2 FISH

Définissez des constantes pour les nombres bruts d'entités d'entrée (jetons/mots) et d'étiquettes (balises de publication). Nos entrées réelles / espaces de sortie sont NUM_OOV_BUCKETS = 1 plus parce que nous ajoutons un jeton / tag MHV.

NUM_WORDS = len(WORD_VOCAB) 
NUM_TAGS = len(TAG_VOCAB)

WORD_VOCAB_SIZE = NUM_WORDS + NUM_OOV_BUCKETS
TAG_VOCAB_SIZE = NUM_TAGS + NUM_OOV_BUCKETS

Créez des versions par lots des ensembles de données et des lots individuels, qui seront utiles pour tester le code au fur et à mesure.

batched_dataset1 = CLIENT1_DATASET.batch(2)
batched_dataset2 = CLIENT2_DATASET.batch(3)
batched_dataset3 = CLIENT3_DATASET.batch(2)

batch1 = next(iter(batched_dataset1))
batch2 = next(iter(batched_dataset2))
batch3 = next(iter(batched_dataset3))

Définir un modèle avec des entrées éparses

Nous utilisons un modèle de régression logistique indépendant simple pour chaque balise.

def create_logistic_model(word_vocab_size: int, vocab_tags_size: int):

  model = tf.keras.models.Sequential([
      tf.keras.layers.InputLayer(input_shape=(word_vocab_size,), sparse=True),
      tf.keras.layers.Dense(
          vocab_tags_size,
          activation='sigmoid',
          kernel_initializer=tf.keras.initializers.zeros,
          # For simplicity, don't use a bias vector; this means the model
          # is a single tensor, and we only need sparse aggregation of
          # the per-token slices of the model. Generalizing to also handle
          # other model weights that are fully updated 
          # (non-dense broadcast and aggregate) would be a good exercise.
          use_bias=False),
  ])

  return model

Assurons-nous que cela fonctionne, d'abord en faisant des prédictions :

model = create_logistic_model(WORD_VOCAB_SIZE, TAG_VOCAB_SIZE)
p = model.predict(batch1.tokens)
print(p)
[[0.5 0.5 0.5 0.5]
 [0.5 0.5 0.5 0.5]]

Et quelques formations centralisées simples :

model.compile(optimizer=tf.keras.optimizers.Adagrad(learning_rate=0.001),
              loss=tf.keras.losses.BinaryCrossentropy())
model.train_on_batch(batch1.tokens, batch1.tags)

Blocs de construction pour le calcul fédéré

Nous mettrons en œuvre une version simple du calcul de la moyenne Federated algorithme avec la principale différence que chaque périphérique télécharge uniquement un sous - ensemble pertinent du modèle, et ne contribue que pour les mises à jour à ce sous - ensemble.

Nous utilisons M comme raccourci pour MAX_TOKENS_SELECTED_PER_CLIENT . À un niveau élevé, un cycle de formation comprend les étapes suivantes :

  1. Chaque client participant analyse son ensemble de données local, analyse les chaînes d'entrée et les mappe aux jetons corrects (index int). Cela exige l' accès au global (grand) dictionnaire (cela pourrait être évité en utilisant le hachage fonction des techniques). Nous comptons ensuite de manière éparse combien de fois chaque jeton se produit. Si U jetons uniques se produisent sur l' appareil, nous choisissons les num_actual_tokens = min(U, M) jetons les plus fréquents à former.

  2. Les clients utilisent federated_select pour récupérer les coefficients de modèle pour les num_actual_tokens sélectionnés jetons à partir du serveur. Chaque tranche de modèle est un tenseur de forme (TAG_VOCAB_SIZE, ) , de sorte que l'ensemble des données transmises au client est au plus la taille TAG_VOCAB_SIZE * M (voir note ci - dessous).

  3. Les clients construisent une cartographie global_token -> local_token où le jeton local (int index) est l'indice du jeton global dans la liste des jetons sélectionnés.

  4. Les clients utilisent une version « petit » du modèle global qui a seulement coefficients pour la plupart M jetons, de la gamme [0, num_actual_tokens) . Le global -> local cartographie est utilisé pour initialiser les paramètres denses de ce modèle à partir des tranches de modèle sélectionné.

  5. Les clients forment leur modèle local en utilisant SGD sur des données prétraitées avec le global -> local cartographie.

  6. Les clients se tournent les paramètres de leur modèle local en IndexedSlices mises à jour à l' aide du local -> global cartographie pour indexer les lignes. Le serveur agrège ces mises à jour à l'aide d'une agrégation de sommes éparses.

  7. Le serveur prend le résultat (dense) de l'agrégation ci-dessus, le divise par le nombre de clients participants et applique la mise à jour moyenne résultante au modèle global.

Dans cette section , nous construisons les blocs de construction pour ces étapes, qui seront ensuite combinés dans une finale federated_computation qui capture la pleine logique d'un cycle de formation.

Nombre de jetons de clients et décider des tranches modèle federated_select

Chaque appareil doit décider quelles « tranches » du modèle sont pertinentes pour son ensemble de données d'entraînement local. Pour notre problème, nous le faisons en comptant (peu !) le nombre d'exemples contenant chaque jeton dans l'ensemble de données d'apprentissage client.

@tf.function
def token_count_fn(token_counts, batch):
  """Adds counts from `batch` to the running `token_counts` sum."""
  # Sum across the batch dimension.
  flat_tokens = tf.sparse.reduce_sum(
      batch.tokens, axis=0, output_is_sparse=True)
  flat_tokens = tf.cast(flat_tokens, dtype=TOKEN_COUNT_DTYPE)
  return tf.sparse.add(token_counts, flat_tokens)
# Simple tests
# Create the initial zero token counts using empty tensors.
initial_token_counts = tf.SparseTensor(
    indices=tf.zeros(shape=(0, 1), dtype=TOKEN_DTYPE),
    values=tf.zeros(shape=(0,), dtype=TOKEN_COUNT_DTYPE),
    dense_shape=(WORD_VOCAB_SIZE,))

client_token_counts = batched_dataset1.reduce(initial_token_counts,
                                              token_count_fn)
tokens = tf.reshape(client_token_counts.indices, (-1,)).numpy()
print('tokens:', tokens)
np.testing.assert_array_equal(tokens, [0, 1, 4, 8])
# The count is the number of *examples* in which the token/word
# occurs, not the total number of occurences, since we still featurize
# multiple occurences in the same example as a "1".
counts = client_token_counts.values.numpy()
print('counts:', counts)
np.testing.assert_array_equal(counts, [2, 3, 1, 1])
tokens: [0 1 4 8]
counts: [2 3 1 1]

Nous sélectionnerons les paramètres du modèle correspondant à la MAX_TOKENS_SELECTED_PER_CLIENT survenant le plus souvent des jetons sur l' appareil. Si moins que ce nombre de jetons se produisent sur l' appareil, nous pavé la liste pour permettre l'utilisation de federated_select .

Notez que d'autres stratégies sont peut-être meilleures, par exemple, la sélection aléatoire de jetons (peut-être en fonction de leur probabilité d'occurrence). Cela garantirait que toutes les tranches du modèle (pour lesquelles le client dispose de données) ont une certaine chance d'être mises à jour.

@tf.function
def keys_for_client(client_dataset, max_tokens_per_client):
  """Computes a set of max_tokens_per_client keys."""
  initial_token_counts = tf.SparseTensor(
      indices=tf.zeros((0, 1), dtype=TOKEN_DTYPE),
      values=tf.zeros((0,), dtype=TOKEN_COUNT_DTYPE),
      dense_shape=(WORD_VOCAB_SIZE,))
  client_token_counts = client_dataset.reduce(initial_token_counts,
                                              token_count_fn)
  # Find the most-frequently occuring tokens
  tokens = tf.reshape(client_token_counts.indices, shape=(-1,))
  counts = client_token_counts.values
  perm = tf.argsort(counts, direction='DESCENDING')
  tokens = tf.gather(tokens, perm)
  counts = tf.gather(counts, perm)
  num_raw_tokens = tf.shape(tokens)[0]
  actual_num_tokens = tf.minimum(max_tokens_per_client, num_raw_tokens)
  selected_tokens = tokens[:actual_num_tokens]
  paddings = [[0, max_tokens_per_client - tf.shape(selected_tokens)[0]]]
  padded_tokens = tf.pad(selected_tokens, paddings=paddings)
  # Make sure the type is statically determined
  padded_tokens = tf.reshape(padded_tokens, shape=(max_tokens_per_client,))

  # We will pass these tokens as keys into `federated_select`, which
  # requires SELECT_KEY_DTYPE=tf.int32 keys.
  padded_tokens = tf.cast(padded_tokens, dtype=SELECT_KEY_DTYPE)
  return padded_tokens, actual_num_tokens
# Simple test

# Case 1: actual_num_tokens > max_tokens_per_client
selected_tokens, actual_num_tokens = keys_for_client(batched_dataset1, 3)
assert tf.size(selected_tokens) == 3
assert actual_num_tokens == 3

# Case 2: actual_num_tokens < max_tokens_per_client
selected_tokens, actual_num_tokens = keys_for_client(batched_dataset1, 10)
assert tf.size(selected_tokens) == 10
assert actual_num_tokens == 4

Mapper des jetons globaux sur des jetons locaux

La sélection ci - dessus nous donne un ensemble dense de jetons dans la gamme [0, actual_num_tokens) que nous utiliserons pour le modèle sur l'appareil. Cependant, l'ensemble de données que nous lisons a des jetons de la gamme de vocabulaire global beaucoup plus [0, WORD_VOCAB_SIZE) .

Ainsi, nous devons mapper les jetons globaux à leurs jetons locaux correspondants. Les identifiants symboliques locales sont simplement donnés par les indices dans les selected_tokens tenseur calculées à l'étape précédente.

@tf.function
def map_to_local_token_ids(client_data, client_keys):
  global_to_local = tf.lookup.StaticHashTable(
      # Note int32 -> int64 maps are not supported
      tf.lookup.KeyValueTensorInitializer(
          keys=tf.cast(client_keys, dtype=TOKEN_DTYPE),
          # Note we need to use tf.shape, not the static 
          # shape client_keys.shape[0]
          values=tf.range(0, limit=tf.shape(client_keys)[0],
                          dtype=TOKEN_DTYPE)),
      # We use -1 for tokens that were not selected, which can occur for clients
      # with more than MAX_TOKENS_SELECTED_PER_CLIENT distinct tokens.
      # We will simply remove these invalid indices from the batch below.
      default_value=-1)

  def to_local_ids(sparse_tokens):
    indices_t = tf.transpose(sparse_tokens.indices)
    batch_indices = indices_t[0]  # First column
    tokens = indices_t[1]  # Second column
    tokens = tf.map_fn(
        lambda global_token_id: global_to_local.lookup(global_token_id), tokens)
    # Remove tokens that aren't actually available (looked up as -1):
    available_tokens = tokens >= 0
    tokens = tokens[available_tokens]
    batch_indices = batch_indices[available_tokens]

    updated_indices = tf.transpose(
        tf.concat([[batch_indices], [tokens]], axis=0))
    st = tf.sparse.SparseTensor(
        updated_indices,
        tf.ones(tf.size(tokens), dtype=FEATURE_DTYPE),
        dense_shape=sparse_tokens.dense_shape)
    st = tf.sparse.reorder(st)
    return st

  return client_data.map(lambda b: BatchType(to_local_ids(b.tokens), b.tags))
# Simple test
client_keys, actual_num_tokens = keys_for_client(
    batched_dataset3, MAX_TOKENS_SELECTED_PER_CLIENT)
client_keys = client_keys[:actual_num_tokens]

d = map_to_local_token_ids(batched_dataset3, client_keys)
batch  = next(iter(d))
all_tokens = tf.gather(batch.tokens.indices, indices=1, axis=1)
# Confirm we have local indices in the range [0, MAX):
assert tf.math.reduce_max(all_tokens) < MAX_TOKENS_SELECTED_PER_CLIENT
assert tf.math.reduce_max(all_tokens) >= 0

Former le (sous-)modèle local sur chaque client

Note federated_select renverra les tranches sélectionnées comme tf.data.Dataset dans le même ordre que les touches de sélection. Ainsi, nous définissons d'abord une fonction d'utilité pour prendre un tel ensemble de données et le convertir en un seul tenseur dense qui peut être utilisé comme poids de modèle du modèle client.

@tf.function
def slices_dataset_to_tensor(slices_dataset):
  """Convert a dataset of slices to a tensor."""
  # Use batching to gather all of the slices into a single tensor.
  d = slices_dataset.batch(MAX_TOKENS_SELECTED_PER_CLIENT,
                           drop_remainder=False)
  iter_d = iter(d)
  tensor = next(iter_d)
  # Make sure we have consumed everything
  opt = iter_d.get_next_as_optional()
  tf.Assert(tf.logical_not(opt.has_value()), data=[''], name='CHECK_EMPTY')
  return tensor
# Simple test
weights = np.random.random(
    size=(MAX_TOKENS_SELECTED_PER_CLIENT, TAG_VOCAB_SIZE)).astype(np.float32)
model_slices_as_dataset = tf.data.Dataset.from_tensor_slices(weights)
weights2 = slices_dataset_to_tensor(model_slices_as_dataset)
np.testing.assert_array_equal(weights, weights2)

Nous avons maintenant tous les composants dont nous avons besoin pour définir une boucle d'entraînement locale simple qui s'exécutera sur chaque client.

@tf.function
def client_train_fn(model, client_optimizer,
                    model_slices_as_dataset, client_data,
                    client_keys, actual_num_tokens):

  initial_model_weights = slices_dataset_to_tensor(model_slices_as_dataset)
  assert len(model.trainable_variables) == 1
  model.trainable_variables[0].assign(initial_model_weights)

  # Only keep the "real" (unpadded) keys.
  client_keys = client_keys[:actual_num_tokens]

  client_data = map_to_local_token_ids(client_data, client_keys)

  loss_fn = tf.keras.losses.BinaryCrossentropy()
  for features, labels in client_data:
    with tf.GradientTape() as tape:
      predictions = model(features)
      loss = loss_fn(labels, predictions)
    grads = tape.gradient(loss, model.trainable_variables)
    client_optimizer.apply_gradients(zip(grads, model.trainable_variables))

  model_weights_delta = model.trainable_weights[0] - initial_model_weights
  model_weights_delta = tf.slice(model_weights_delta, begin=[0, 0], 
                           size=[actual_num_tokens, -1])
  return client_keys, model_weights_delta
# Simple test
# Note if you execute this cell a second time, you need to also re-execute
# the preceeding cell to avoid "tf.function-decorated function tried to 
# create variables on non-first call" errors.
on_device_model = create_logistic_model(MAX_TOKENS_SELECTED_PER_CLIENT,
                                        TAG_VOCAB_SIZE)
client_optimizer = tf.keras.optimizers.SGD(learning_rate=0.001)
client_keys, actual_num_tokens = keys_for_client(
    batched_dataset2, MAX_TOKENS_SELECTED_PER_CLIENT)

model_slices_as_dataset = tf.data.Dataset.from_tensor_slices(
    np.zeros((MAX_TOKENS_SELECTED_PER_CLIENT, TAG_VOCAB_SIZE),
             dtype=np.float32))

keys, delta = client_train_fn(
    on_device_model,
    client_optimizer,
    model_slices_as_dataset,
    client_data=batched_dataset3,
    client_keys=client_keys,
    actual_num_tokens=actual_num_tokens)

print(delta)

Agréger les tranches indexées

Nous utilisons tff.federated_aggregate pour construire une somme clairsemée fédérée pour IndexedSlices . Cette mise en œuvre simple , a la contrainte que la dense_shape est connue statiquement à l' avance. Notez également que cette somme est seulement semi-rares, dans le sens où le client -> communication du serveur est clairsemée, mais le serveur maintient une représentation dense de la somme accumulate et merge , et transmet cette représentation dense.

def federated_indexed_slices_sum(slice_indices, slice_values, dense_shape):
  """
  Sumes IndexedSlices@CLIENTS to a dense @SERVER Tensor.

  Intermediate aggregation is performed by converting to a dense representation,
  which may not be suitable for all applications.

  Args:
    slice_indices: An IndexedSlices.indices tensor @CLIENTS.
    slice_values: An IndexedSlices.values tensor @CLIENTS.
    dense_shape: A statically known dense shape.

  Returns:
    A dense tensor placed @SERVER representing the sum of the client's
    IndexedSclies.
  """
  slices_dtype = slice_values.type_signature.member.dtype
  zero = tff.tf_computation(
      lambda: tf.zeros(dense_shape, dtype=slices_dtype))()

  @tf.function
  def accumulate_slices(dense, client_value):
    indices, slices = client_value
    # There is no built-in way to add `IndexedSlices`, but 
    # tf.convert_to_tensor is a quick way to convert to a dense representation
    # so we can add them.
    return dense + tf.convert_to_tensor(
        tf.IndexedSlices(slices, indices, dense_shape))


  return tff.federated_aggregate(
      (slice_indices, slice_values),
      zero=zero,
      accumulate=tff.tf_computation(accumulate_slices),
      merge=tff.tf_computation(lambda d1, d2: tf.add(d1, d2, name='merge')),
      report=tff.tf_computation(lambda d: d))

Construire un minimum federated_computation comme un test

dense_shape = (6, 2)
indices_type = tff.TensorType(tf.int64, (None,))
values_type = tff.TensorType(tf.float32, (None, 2))
client_slice_type = tff.type_at_clients(
    (indices_type, values_type))

@tff.federated_computation(client_slice_type)
def test_sum_indexed_slices(indices_values_at_client):
  indices, values = indices_values_at_client
  return federated_indexed_slices_sum(indices, values, dense_shape)

print(test_sum_indexed_slices.type_signature)
({<int64[?],float32[?,2]>}@CLIENTS -> float32[6,2]@SERVER)
x = tf.IndexedSlices(
    values=np.array([[2., 2.1], [0., 0.1], [1., 1.1], [5., 5.1]],
                    dtype=np.float32),
    indices=[2, 0, 1, 5],
    dense_shape=dense_shape)
y = tf.IndexedSlices(
    values=np.array([[0., 0.3], [3.1, 3.2]], dtype=np.float32),
    indices=[1, 3],
    dense_shape=dense_shape)

# Sum one.
result = test_sum_indexed_slices([(x.indices, x.values)])
np.testing.assert_array_equal(tf.convert_to_tensor(x), result)

# Sum two.
expected = [[0., 0.1], [1., 1.4], [2., 2.1], [3.1, 3.2], [0., 0.], [5., 5.1]]
result = test_sum_indexed_slices([(x.indices, x.values), (y.indices, y.values)])
np.testing.assert_array_almost_equal(expected, result)

Mettre tous ensemble dans un federated_computation

Nous utilise maintenant TFF pour lier ensemble les composants dans un tff.federated_computation .

DENSE_MODEL_SHAPE = (WORD_VOCAB_SIZE, TAG_VOCAB_SIZE)
client_data_type = tff.SequenceType(batched_dataset1.element_spec)
model_type = tff.TensorType(tf.float32, shape=DENSE_MODEL_SHAPE)

Nous utilisons une fonction de formation de serveur de base basée sur la moyenne fédérée, en appliquant la mise à jour avec un taux d'apprentissage du serveur de 1,0. Il est important que nous appliquions une mise à jour (delta) au modèle, plutôt que de simplement faire la moyenne des modèles fournis par le client, car sinon, si une tranche donnée du modèle n'a été entraînée par aucun client lors d'un tour donné, ses coefficients pourraient être mis à zéro. dehors.

@tff.tf_computation
def server_update(current_model_weights, update_sum, num_clients):
  average_update = update_sum / num_clients
  return current_model_weights + average_update

Nous avons besoin d' un couple plus tff.tf_computation composants:

# Function to select slices from the model weights in federated_select:
select_fn = tff.tf_computation(
    lambda model_weights, index: tf.gather(model_weights, index))


# We need to wrap `client_train_fn` as a `tff.tf_computation`, making
# sure we do any operations that might construct `tf.Variable`s outside
# of the `tf.function` we are wrapping.
@tff.tf_computation
def client_train_fn_tff(model_slices_as_dataset, client_data, client_keys,
                        actual_num_tokens):
  # Note this is amaller than the global model, using
  # MAX_TOKENS_SELECTED_PER_CLIENT which is much smaller than WORD_VOCAB_SIZE.
  # W7e would like a model of size `actual_num_tokens`, but we
  # can't build the model dynamically, so we will slice off the padded
  # weights at the end.
  client_model = create_logistic_model(MAX_TOKENS_SELECTED_PER_CLIENT,
                                       TAG_VOCAB_SIZE)
  client_optimizer = tf.keras.optimizers.SGD(learning_rate=0.1)
  return client_train_fn(client_model, client_optimizer,
                         model_slices_as_dataset, client_data, client_keys,
                         actual_num_tokens)

@tff.tf_computation
def keys_for_client_tff(client_data):
  return keys_for_client(client_data, MAX_TOKENS_SELECTED_PER_CLIENT)

Nous sommes maintenant prêts à assembler toutes les pièces !

@tff.federated_computation(
    tff.type_at_server(model_type), tff.type_at_clients(client_data_type))
def sparse_model_update(server_model, client_data):
  max_tokens = tff.federated_value(MAX_TOKENS_SELECTED_PER_CLIENT, tff.SERVER)
  keys_at_clients, actual_num_tokens = tff.federated_map(
      keys_for_client_tff, client_data)

  model_slices = tff.federated_select(keys_at_clients, max_tokens, server_model,
                                      select_fn)

  update_keys, update_slices = tff.federated_map(
      client_train_fn_tff,
      (model_slices, client_data, keys_at_clients, actual_num_tokens))

  dense_update_sum = federated_indexed_slices_sum(update_keys, update_slices,
                                                  DENSE_MODEL_SHAPE)
  num_clients = tff.federated_sum(tff.federated_value(1.0, tff.CLIENTS))

  updated_server_model = tff.federated_map(
      server_update, (server_model, dense_update_sum, num_clients))

  return updated_server_model


print(sparse_model_update.type_signature)
(<server_model=float32[13,4]@SERVER,client_data={<tokens=<indices=int64[?,2],values=int32[?],dense_shape=int64[2]>,tags=float32[?,4]>*}@CLIENTS> -> float32[13,4]@SERVER)

Entraînons un modèle !

Maintenant que nous avons notre fonction d'entraînement, essayons-la.

server_model = create_logistic_model(WORD_VOCAB_SIZE, TAG_VOCAB_SIZE)
server_model.compile(  # Compile to make evaluation easy.
    optimizer=tf.keras.optimizers.Adagrad(learning_rate=0.0),  # Unused
    loss=tf.keras.losses.BinaryCrossentropy(),
    metrics=[ 
      tf.keras.metrics.Precision(name='precision'),
      tf.keras.metrics.AUC(name='auc'),
      tf.keras.metrics.Recall(top_k=2, name='recall_at_2'),
  ])

def evaluate(model, dataset, name):
  metrics = model.evaluate(dataset, verbose=0)
  metrics_str = ', '.join([f'{k}={v:.2f}' for k, v in 
                          (zip(server_model.metrics_names, metrics))])
  print(f'{name}: {metrics_str}')
print('Before training')
evaluate(server_model, batched_dataset1, 'Client 1')
evaluate(server_model, batched_dataset2, 'Client 2')
evaluate(server_model, batched_dataset3, 'Client 3')

model_weights = server_model.trainable_weights[0]

client_datasets = [batched_dataset1, batched_dataset2, batched_dataset3]
for _ in range(10):  # Run 10 rounds of FedAvg
  # We train on 1, 2, or 3 clients per round, selecting
  # randomly.
  cohort_size = np.random.randint(1, 4)
  clients = np.random.choice([0, 1, 2], cohort_size, replace=False)
  print('Training on clients', clients)
  model_weights = sparse_model_update(
      model_weights, [client_datasets[i] for i in clients])
server_model.set_weights([model_weights])

print('After training')
evaluate(server_model, batched_dataset1, 'Client 1')
evaluate(server_model, batched_dataset2, 'Client 2')
evaluate(server_model, batched_dataset3, 'Client 3')
Before training
Client 1: loss=0.69, precision=0.00, auc=0.50, recall_at_2=0.60
Client 2: loss=0.69, precision=0.00, auc=0.50, recall_at_2=0.50
Client 3: loss=0.69, precision=0.00, auc=0.50, recall_at_2=0.40
Training on clients [0 1]
Training on clients [0 2 1]
Training on clients [2 0]
Training on clients [1 0 2]
Training on clients [2]
Training on clients [2 0]
Training on clients [1 2 0]
Training on clients [0]
Training on clients [2]
Training on clients [1 2]
After training
Client 1: loss=0.67, precision=0.80, auc=0.91, recall_at_2=0.80
Client 2: loss=0.68, precision=0.67, auc=0.96, recall_at_2=1.00
Client 3: loss=0.65, precision=1.00, auc=0.93, recall_at_2=0.80