![]() | ![]() | ![]() | ![]() |
Introdução
Um retorno de chamada é uma ferramenta poderosa para personalizar o comportamento de um modelo Keras durante o treinamento, avaliação ou inferência. Exemplos incluem tf.keras.callbacks.TensorBoard
visualizar progresso do treinamento e os resultados com TensorBoard, ou tf.keras.callbacks.ModelCheckpoint
periodicamente salvar seu modelo durante o treinamento.
Neste guia, você aprenderá o que é um retorno de chamada de Keras, o que ele pode fazer e como você pode criar o seu próprio. Fornecemos algumas demonstrações de aplicativos de retorno de chamada simples para você começar.
Configurar
import tensorflow as tf
from tensorflow import keras
Visão geral dos retornos de chamada de Keras
Todos os retornos de chamada subclasse o keras.callbacks.Callback
classe, e substituir um conjunto de métodos chamados em vários estágios de formação, teste e prevendo. Callbacks são úteis para obter uma visão dos estados internos e estatísticas do modelo durante o treinamento.
Você pode passar uma lista de chamadas de retorno (como o argumento de palavra-chave callbacks
) para os seguintes métodos de modelo:
Uma visão geral dos métodos de retorno de chamada
Métodos globais
on_(train|test|predict)_begin(self, logs=None)
Chamado no início do fit
/ evaluate
/ predict
.
on_(train|test|predict)_end(self, logs=None)
Chamado no final de fit
/ evaluate
/ predict
.
Métodos em nível de lote para treinamento / teste / previsão
on_(train|test|predict)_batch_begin(self, batch, logs=None)
Chamado imediatamente antes de processar um lote durante o treinamento / teste / previsão.
on_(train|test|predict)_batch_end(self, batch, logs=None)
Chamado no final do treinamento / teste / previsão de um lote. Dentro deste método, logs
é um dicionário que contém os resultados de métricas.
Métodos de nível de época (apenas treinamento)
on_epoch_begin(self, epoch, logs=None)
Chamado no início de uma época durante o treinamento.
on_epoch_end(self, epoch, logs=None)
Chamado no final de uma época durante o treinamento.
Um exemplo básico
Vamos dar uma olhada em um exemplo concreto. Para começar, vamos importar tensorflow e definir um modelo sequencial simples de Keras:
# Define the Keras model to add callbacks to
def get_model():
model = keras.Sequential()
model.add(keras.layers.Dense(1, input_dim=784))
model.compile(
optimizer=keras.optimizers.RMSprop(learning_rate=0.1),
loss="mean_squared_error",
metrics=["mean_absolute_error"],
)
return model
Em seguida, carregue os dados MNIST para treinamento e teste da API de conjuntos de dados Keras:
# Load example MNIST data and pre-process it
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = x_train.reshape(-1, 784).astype("float32") / 255.0
x_test = x_test.reshape(-1, 784).astype("float32") / 255.0
# Limit the data to 1000 samples
x_train = x_train[:1000]
y_train = y_train[:1000]
x_test = x_test[:1000]
y_test = y_test[:1000]
Agora, defina um retorno de chamada personalizado simples que registre:
- Quando
fit
/evaluate
/predict
começa e termina - Quando cada época começa e termina
- Quando cada lote de treinamento começa e termina
- Quando cada lote de avaliação (teste) começa e termina
- Quando cada lote de inferência (predição) começa e termina
class CustomCallback(keras.callbacks.Callback):
def on_train_begin(self, logs=None):
keys = list(logs.keys())
print("Starting training; got log keys: {}".format(keys))
def on_train_end(self, logs=None):
keys = list(logs.keys())
print("Stop training; got log keys: {}".format(keys))
def on_epoch_begin(self, epoch, logs=None):
keys = list(logs.keys())
print("Start epoch {} of training; got log keys: {}".format(epoch, keys))
def on_epoch_end(self, epoch, logs=None):
keys = list(logs.keys())
print("End epoch {} of training; got log keys: {}".format(epoch, keys))
def on_test_begin(self, logs=None):
keys = list(logs.keys())
print("Start testing; got log keys: {}".format(keys))
def on_test_end(self, logs=None):
keys = list(logs.keys())
print("Stop testing; got log keys: {}".format(keys))
def on_predict_begin(self, logs=None):
keys = list(logs.keys())
print("Start predicting; got log keys: {}".format(keys))
def on_predict_end(self, logs=None):
keys = list(logs.keys())
print("Stop predicting; got log keys: {}".format(keys))
def on_train_batch_begin(self, batch, logs=None):
keys = list(logs.keys())
print("...Training: start of batch {}; got log keys: {}".format(batch, keys))
def on_train_batch_end(self, batch, logs=None):
keys = list(logs.keys())
print("...Training: end of batch {}; got log keys: {}".format(batch, keys))
def on_test_batch_begin(self, batch, logs=None):
keys = list(logs.keys())
print("...Evaluating: start of batch {}; got log keys: {}".format(batch, keys))
def on_test_batch_end(self, batch, logs=None):
keys = list(logs.keys())
print("...Evaluating: end of batch {}; got log keys: {}".format(batch, keys))
def on_predict_batch_begin(self, batch, logs=None):
keys = list(logs.keys())
print("...Predicting: start of batch {}; got log keys: {}".format(batch, keys))
def on_predict_batch_end(self, batch, logs=None):
keys = list(logs.keys())
print("...Predicting: end of batch {}; got log keys: {}".format(batch, keys))
Vamos experimentar:
model = get_model()
model.fit(
x_train,
y_train,
batch_size=128,
epochs=1,
verbose=0,
validation_split=0.5,
callbacks=[CustomCallback()],
)
res = model.evaluate(
x_test, y_test, batch_size=128, verbose=0, callbacks=[CustomCallback()]
)
res = model.predict(x_test, batch_size=128, callbacks=[CustomCallback()])
Starting training; got log keys: [] Start epoch 0 of training; got log keys: [] ...Training: start of batch 0; got log keys: [] ...Training: end of batch 0; got log keys: ['loss', 'mean_absolute_error'] ...Training: start of batch 1; got log keys: [] ...Training: end of batch 1; got log keys: ['loss', 'mean_absolute_error'] ...Training: start of batch 2; got log keys: [] ...Training: end of batch 2; got log keys: ['loss', 'mean_absolute_error'] ...Training: start of batch 3; got log keys: [] ...Training: end of batch 3; got log keys: ['loss', 'mean_absolute_error'] Start testing; got log keys: [] ...Evaluating: start of batch 0; got log keys: [] ...Evaluating: end of batch 0; got log keys: ['loss', 'mean_absolute_error'] ...Evaluating: start of batch 1; got log keys: [] ...Evaluating: end of batch 1; got log keys: ['loss', 'mean_absolute_error'] ...Evaluating: start of batch 2; got log keys: [] ...Evaluating: end of batch 2; got log keys: ['loss', 'mean_absolute_error'] ...Evaluating: start of batch 3; got log keys: [] ...Evaluating: end of batch 3; got log keys: ['loss', 'mean_absolute_error'] Stop testing; got log keys: ['loss', 'mean_absolute_error'] End epoch 0 of training; got log keys: ['loss', 'mean_absolute_error', 'val_loss', 'val_mean_absolute_error'] Stop training; got log keys: ['loss', 'mean_absolute_error', 'val_loss', 'val_mean_absolute_error'] Start testing; got log keys: [] ...Evaluating: start of batch 0; got log keys: [] ...Evaluating: end of batch 0; got log keys: ['loss', 'mean_absolute_error'] ...Evaluating: start of batch 1; got log keys: [] ...Evaluating: end of batch 1; got log keys: ['loss', 'mean_absolute_error'] ...Evaluating: start of batch 2; got log keys: [] ...Evaluating: end of batch 2; got log keys: ['loss', 'mean_absolute_error'] ...Evaluating: start of batch 3; got log keys: [] ...Evaluating: end of batch 3; got log keys: ['loss', 'mean_absolute_error'] ...Evaluating: start of batch 4; got log keys: [] ...Evaluating: end of batch 4; got log keys: ['loss', 'mean_absolute_error'] ...Evaluating: start of batch 5; got log keys: [] ...Evaluating: end of batch 5; got log keys: ['loss', 'mean_absolute_error'] ...Evaluating: start of batch 6; got log keys: [] ...Evaluating: end of batch 6; got log keys: ['loss', 'mean_absolute_error'] ...Evaluating: start of batch 7; got log keys: [] ...Evaluating: end of batch 7; got log keys: ['loss', 'mean_absolute_error'] Stop testing; got log keys: ['loss', 'mean_absolute_error'] Start predicting; got log keys: [] ...Predicting: start of batch 0; got log keys: [] ...Predicting: end of batch 0; got log keys: ['outputs'] ...Predicting: start of batch 1; got log keys: [] ...Predicting: end of batch 1; got log keys: ['outputs'] ...Predicting: start of batch 2; got log keys: [] ...Predicting: end of batch 2; got log keys: ['outputs'] ...Predicting: start of batch 3; got log keys: [] ...Predicting: end of batch 3; got log keys: ['outputs'] ...Predicting: start of batch 4; got log keys: [] ...Predicting: end of batch 4; got log keys: ['outputs'] ...Predicting: start of batch 5; got log keys: [] ...Predicting: end of batch 5; got log keys: ['outputs'] ...Predicting: start of batch 6; got log keys: [] ...Predicting: end of batch 6; got log keys: ['outputs'] ...Predicting: start of batch 7; got log keys: [] ...Predicting: end of batch 7; got log keys: ['outputs'] Stop predicting; got log keys: []
Uso de logs
dict
O logs
Dict contém o valor de perda, e todas as métricas no fim de um lote ou época. O exemplo inclui a perda e o erro absoluto médio.
class LossAndErrorPrintingCallback(keras.callbacks.Callback):
def on_train_batch_end(self, batch, logs=None):
print(
"Up to batch {}, the average loss is {:7.2f}.".format(batch, logs["loss"])
)
def on_test_batch_end(self, batch, logs=None):
print(
"Up to batch {}, the average loss is {:7.2f}.".format(batch, logs["loss"])
)
def on_epoch_end(self, epoch, logs=None):
print(
"The average loss for epoch {} is {:7.2f} "
"and mean absolute error is {:7.2f}.".format(
epoch, logs["loss"], logs["mean_absolute_error"]
)
)
model = get_model()
model.fit(
x_train,
y_train,
batch_size=128,
epochs=2,
verbose=0,
callbacks=[LossAndErrorPrintingCallback()],
)
res = model.evaluate(
x_test,
y_test,
batch_size=128,
verbose=0,
callbacks=[LossAndErrorPrintingCallback()],
)
Up to batch 0, the average loss is 30.79. Up to batch 1, the average loss is 459.11. Up to batch 2, the average loss is 314.68. Up to batch 3, the average loss is 237.97. Up to batch 4, the average loss is 191.76. Up to batch 5, the average loss is 160.95. Up to batch 6, the average loss is 138.74. Up to batch 7, the average loss is 124.85. The average loss for epoch 0 is 124.85 and mean absolute error is 6.00. Up to batch 0, the average loss is 5.13. Up to batch 1, the average loss is 4.66. Up to batch 2, the average loss is 4.71. Up to batch 3, the average loss is 4.66. Up to batch 4, the average loss is 4.69. Up to batch 5, the average loss is 4.56. Up to batch 6, the average loss is 4.77. Up to batch 7, the average loss is 4.77. The average loss for epoch 1 is 4.77 and mean absolute error is 1.75. Up to batch 0, the average loss is 5.73. Up to batch 1, the average loss is 5.04. Up to batch 2, the average loss is 5.10. Up to batch 3, the average loss is 5.14. Up to batch 4, the average loss is 5.37. Up to batch 5, the average loss is 5.24. Up to batch 6, the average loss is 5.22. Up to batch 7, the average loss is 5.16.
Uso de self.model
atributo
Além de receber informações de log quando um de seus métodos é chamado, retornos de chamada tem acesso ao modelo associado com a atual rodada de formação / avaliação / inferência: self.model
.
Aqui são algumas das coisas que você pode fazer com self.model
em uma chamada de retorno:
- Set
self.model.stop_training = True
a treinar imediatamente interrupção. - Hiperparâmetros mutar do optimizador (disponíveis como
self.model.optimizer
), tais comoself.model.optimizer.learning_rate
. - Salve o modelo em intervalos de período.
- Gravar a saída de
model.predict()
em algumas amostras de teste no final de cada época, para usar como uma verificação de sanidade durante o treino. - Extraia visualizações de recursos intermediários no final de cada época, para monitorar o que o modelo está aprendendo ao longo do tempo.
- etc.
Vamos ver isso em ação em alguns exemplos.
Exemplos de aplicativos de retorno de chamada Keras
Parada antecipada com perda mínima
Este primeiro exemplo mostra a criação de uma Callback
que impede a formação quando o mínimo de perda foi alcançado, definindo o atributo self.model.stop_training
(boolean). Opcionalmente, você pode fornecer um argumento patience
para especificar quantas épocas devemos esperar antes de parar depois de ter atingido um mínimo local.
tf.keras.callbacks.EarlyStopping
fornece uma implementação mais completa e geral.
import numpy as np
class EarlyStoppingAtMinLoss(keras.callbacks.Callback):
"""Stop training when the loss is at its min, i.e. the loss stops decreasing.
Arguments:
patience: Number of epochs to wait after min has been hit. After this
number of no improvement, training stops.
"""
def __init__(self, patience=0):
super(EarlyStoppingAtMinLoss, self).__init__()
self.patience = patience
# best_weights to store the weights at which the minimum loss occurs.
self.best_weights = None
def on_train_begin(self, logs=None):
# The number of epoch it has waited when loss is no longer minimum.
self.wait = 0
# The epoch the training stops at.
self.stopped_epoch = 0
# Initialize the best as infinity.
self.best = np.Inf
def on_epoch_end(self, epoch, logs=None):
current = logs.get("loss")
if np.less(current, self.best):
self.best = current
self.wait = 0
# Record the best weights if current results is better (less).
self.best_weights = self.model.get_weights()
else:
self.wait += 1
if self.wait >= self.patience:
self.stopped_epoch = epoch
self.model.stop_training = True
print("Restoring model weights from the end of the best epoch.")
self.model.set_weights(self.best_weights)
def on_train_end(self, logs=None):
if self.stopped_epoch > 0:
print("Epoch %05d: early stopping" % (self.stopped_epoch + 1))
model = get_model()
model.fit(
x_train,
y_train,
batch_size=64,
steps_per_epoch=5,
epochs=30,
verbose=0,
callbacks=[LossAndErrorPrintingCallback(), EarlyStoppingAtMinLoss()],
)
Up to batch 0, the average loss is 34.62. Up to batch 1, the average loss is 405.62. Up to batch 2, the average loss is 282.27. Up to batch 3, the average loss is 215.95. Up to batch 4, the average loss is 175.32. The average loss for epoch 0 is 175.32 and mean absolute error is 8.59. Up to batch 0, the average loss is 8.86. Up to batch 1, the average loss is 7.31. Up to batch 2, the average loss is 6.51. Up to batch 3, the average loss is 6.71. Up to batch 4, the average loss is 6.24. The average loss for epoch 1 is 6.24 and mean absolute error is 2.06. Up to batch 0, the average loss is 4.83. Up to batch 1, the average loss is 5.05. Up to batch 2, the average loss is 4.71. Up to batch 3, the average loss is 4.41. Up to batch 4, the average loss is 4.48. The average loss for epoch 2 is 4.48 and mean absolute error is 1.68. Up to batch 0, the average loss is 5.84. Up to batch 1, the average loss is 5.73. Up to batch 2, the average loss is 7.24. Up to batch 3, the average loss is 10.34. Up to batch 4, the average loss is 15.53. The average loss for epoch 3 is 15.53 and mean absolute error is 3.20. Restoring model weights from the end of the best epoch. Epoch 00004: early stopping <keras.callbacks.History at 0x7fd0843bf510>
Programação da taxa de aprendizagem
Neste exemplo, mostramos como um retorno de chamada personalizado pode ser usado para alterar dinamicamente a taxa de aprendizado do otimizador durante o curso de treinamento.
Veja callbacks.LearningRateScheduler
por implementações mais gerais.
class CustomLearningRateScheduler(keras.callbacks.Callback):
"""Learning rate scheduler which sets the learning rate according to schedule.
Arguments:
schedule: a function that takes an epoch index
(integer, indexed from 0) and current learning rate
as inputs and returns a new learning rate as output (float).
"""
def __init__(self, schedule):
super(CustomLearningRateScheduler, self).__init__()
self.schedule = schedule
def on_epoch_begin(self, epoch, logs=None):
if not hasattr(self.model.optimizer, "lr"):
raise ValueError('Optimizer must have a "lr" attribute.')
# Get the current learning rate from model's optimizer.
lr = float(tf.keras.backend.get_value(self.model.optimizer.learning_rate))
# Call schedule function to get the scheduled learning rate.
scheduled_lr = self.schedule(epoch, lr)
# Set the value back to the optimizer before this epoch starts
tf.keras.backend.set_value(self.model.optimizer.lr, scheduled_lr)
print("\nEpoch %05d: Learning rate is %6.4f." % (epoch, scheduled_lr))
LR_SCHEDULE = [
# (epoch to start, learning rate) tuples
(3, 0.05),
(6, 0.01),
(9, 0.005),
(12, 0.001),
]
def lr_schedule(epoch, lr):
"""Helper function to retrieve the scheduled learning rate based on epoch."""
if epoch < LR_SCHEDULE[0][0] or epoch > LR_SCHEDULE[-1][0]:
return lr
for i in range(len(LR_SCHEDULE)):
if epoch == LR_SCHEDULE[i][0]:
return LR_SCHEDULE[i][1]
return lr
model = get_model()
model.fit(
x_train,
y_train,
batch_size=64,
steps_per_epoch=5,
epochs=15,
verbose=0,
callbacks=[
LossAndErrorPrintingCallback(),
CustomLearningRateScheduler(lr_schedule),
],
)
Epoch 00000: Learning rate is 0.1000. Up to batch 0, the average loss is 26.55. Up to batch 1, the average loss is 435.15. Up to batch 2, the average loss is 298.00. Up to batch 3, the average loss is 225.91. Up to batch 4, the average loss is 182.66. The average loss for epoch 0 is 182.66 and mean absolute error is 8.16. Epoch 00001: Learning rate is 0.1000. Up to batch 0, the average loss is 7.30. Up to batch 1, the average loss is 6.22. Up to batch 2, the average loss is 6.76. Up to batch 3, the average loss is 6.37. Up to batch 4, the average loss is 5.98. The average loss for epoch 1 is 5.98 and mean absolute error is 2.01. Epoch 00002: Learning rate is 0.1000. Up to batch 0, the average loss is 4.23. Up to batch 1, the average loss is 4.56. Up to batch 2, the average loss is 4.81. Up to batch 3, the average loss is 4.63. Up to batch 4, the average loss is 4.67. The average loss for epoch 2 is 4.67 and mean absolute error is 1.73. Epoch 00003: Learning rate is 0.0500. Up to batch 0, the average loss is 6.24. Up to batch 1, the average loss is 5.62. Up to batch 2, the average loss is 5.48. Up to batch 3, the average loss is 5.09. Up to batch 4, the average loss is 4.68. The average loss for epoch 3 is 4.68 and mean absolute error is 1.77. Epoch 00004: Learning rate is 0.0500. Up to batch 0, the average loss is 3.38. Up to batch 1, the average loss is 3.83. Up to batch 2, the average loss is 3.53. Up to batch 3, the average loss is 3.64. Up to batch 4, the average loss is 3.76. The average loss for epoch 4 is 3.76 and mean absolute error is 1.54. Epoch 00005: Learning rate is 0.0500. Up to batch 0, the average loss is 3.62. Up to batch 1, the average loss is 3.79. Up to batch 2, the average loss is 3.75. Up to batch 3, the average loss is 3.83. Up to batch 4, the average loss is 4.37. The average loss for epoch 5 is 4.37 and mean absolute error is 1.65. Epoch 00006: Learning rate is 0.0100. Up to batch 0, the average loss is 6.73. Up to batch 1, the average loss is 6.13. Up to batch 2, the average loss is 5.11. Up to batch 3, the average loss is 4.57. Up to batch 4, the average loss is 4.21. The average loss for epoch 6 is 4.21 and mean absolute error is 1.61. Epoch 00007: Learning rate is 0.0100. Up to batch 0, the average loss is 3.37. Up to batch 1, the average loss is 3.83. Up to batch 2, the average loss is 3.80. Up to batch 3, the average loss is 3.50. Up to batch 4, the average loss is 3.31. The average loss for epoch 7 is 3.31 and mean absolute error is 1.42. Epoch 00008: Learning rate is 0.0100. Up to batch 0, the average loss is 5.33. Up to batch 1, the average loss is 4.84. Up to batch 2, the average loss is 4.02. Up to batch 3, the average loss is 3.87. Up to batch 4, the average loss is 3.85. The average loss for epoch 8 is 3.85 and mean absolute error is 1.53. Epoch 00009: Learning rate is 0.0050. Up to batch 0, the average loss is 1.84. Up to batch 1, the average loss is 2.75. Up to batch 2, the average loss is 3.16. Up to batch 3, the average loss is 3.52. Up to batch 4, the average loss is 3.34. The average loss for epoch 9 is 3.34 and mean absolute error is 1.43. Epoch 00010: Learning rate is 0.0050. Up to batch 0, the average loss is 2.36. Up to batch 1, the average loss is 2.91. Up to batch 2, the average loss is 2.63. Up to batch 3, the average loss is 2.93. Up to batch 4, the average loss is 3.17. The average loss for epoch 10 is 3.17 and mean absolute error is 1.36. Epoch 00011: Learning rate is 0.0050. Up to batch 0, the average loss is 3.32. Up to batch 1, the average loss is 3.02. Up to batch 2, the average loss is 2.96. Up to batch 3, the average loss is 2.80. Up to batch 4, the average loss is 2.92. The average loss for epoch 11 is 2.92 and mean absolute error is 1.32. Epoch 00012: Learning rate is 0.0010. Up to batch 0, the average loss is 4.11. Up to batch 1, the average loss is 3.70. Up to batch 2, the average loss is 3.89. Up to batch 3, the average loss is 3.76. Up to batch 4, the average loss is 3.45. The average loss for epoch 12 is 3.45 and mean absolute error is 1.44. Epoch 00013: Learning rate is 0.0010. Up to batch 0, the average loss is 3.38. Up to batch 1, the average loss is 3.34. Up to batch 2, the average loss is 3.26. Up to batch 3, the average loss is 3.56. Up to batch 4, the average loss is 3.62. The average loss for epoch 13 is 3.62 and mean absolute error is 1.44. Epoch 00014: Learning rate is 0.0010. Up to batch 0, the average loss is 2.48. Up to batch 1, the average loss is 2.38. Up to batch 2, the average loss is 2.76. Up to batch 3, the average loss is 2.63. Up to batch 4, the average loss is 2.66. The average loss for epoch 14 is 2.66 and mean absolute error is 1.29. <keras.callbacks.History at 0x7fd08446c290>
Callbacks Keras integrados
Certifique-se de verificar os retornos de chamada Keras existentes através da leitura dos docs API . Os aplicativos incluem registro em CSV, salvamento do modelo, visualização de métricas no TensorBoard e muito mais!