Effective Tensorflow 2

View on TensorFlow.org Run in Google Colab View on GitHub Download notebook

Overview

This guide provides a list of best practices for writing code using TensorFlow 2 (TF2). Refer to the migrate section of the guide for more info on migrating your TF1.x code to TF2.

Setup

Import TensorFlow and other dependencies for the examples in this guide.

import tensorflow as tf
import tensorflow_datasets as tfds

Recommendations for idiomatic TensorFlow 2

Refactor your code into smaller modules

A good practice is to refactor your code into smaller functions that are called as needed. For best performance, you should try to decorate the largest blocks of computation that you can in a tf.function (note that the nested python functions called by a tf.function do not require their own separate decorations, unless you want to use different jit_compile settings for the tf.function). Depending on your use case, this could be multiple training steps or even your whole training loop. For inference use cases, it might be a single model forward pass.

Adjust the default learning rate for some tf.keras.optimizers

Some Keras optimizers have different learning rates in TF2. If you see a change in convergence behavior for your models, check the default learning rates.

There are no changes for optimizers.SGD, optimizers.Adam, or optimizers.RMSprop.

The following default learning rates have changed:

Use tf.Modules and Keras layers to manage variables

tf.Modules and tf.keras.layers.Layers offer the convenient variables and trainable_variables properties, which recursively gather up all dependent variables. This makes it easy to manage variables locally to where they are being used.

Keras layers/models inherit from tf.train.Checkpointable and are integrated with @tf.function, which makes it possible to directly checkpoint or export SavedModels from Keras objects. You do not necessarily have to use Keras' Model.fit API to take advantage of these integrations.

Read the section on transfer learning and fine-tuning in the Keras guide to learn how to collect a subset of relevant variables using Keras.

Combine tf.data.Datasets and tf.function

The TensorFlow Datasets package (tfds) contains utilities for loading predefined datasets as tf.data.Dataset objects. For this example, you can load the MNIST dataset using tfds:

datasets, info = tfds.load(name='mnist', with_info=True, as_supervised=True)
mnist_train, mnist_test = datasets['train'], datasets['test']

Then prepare the data for training:

  • Re-scale each image.
  • Shuffle the order of the examples.
  • Collect batches of images and labels.
BUFFER_SIZE = 10 # Use a much larger value for real code
BATCH_SIZE = 64
NUM_EPOCHS = 5


def scale(image, label):
  image = tf.cast(image, tf.float32)
  image /= 255

  return image, label

To keep the example short, trim the dataset to only return 5 batches:

train_data = mnist_train.map(scale).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
test_data = mnist_test.map(scale).batch(BATCH_SIZE)

STEPS_PER_EPOCH = 5

train_data = train_data.take(STEPS_PER_EPOCH)
test_data = test_data.take(STEPS_PER_EPOCH)
image_batch, label_batch = next(iter(train_data))
2021-09-22 22:13:17.284138: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

Use regular Python iteration to iterate over training data that fits in memory. Otherwise, tf.data.Dataset is the best way to stream training data from disk. Datasets are iterables (not iterators), and work just like other Python iterables in eager execution. You can fully utilize dataset async prefetching/streaming features by wrapping your code in tf.function, which replaces Python iteration with the equivalent graph operations using AutoGraph.

@tf.function
def train(model, dataset, optimizer):
  for x, y in dataset:
    with tf.GradientTape() as tape:
      # training=True is only needed if there are layers with different
      # behavior during training versus inference (e.g. Dropout).
      prediction = model(x, training=True)
      loss = loss_fn(prediction, y)
    gradients = tape.gradient(loss, model.trainable_variables)
    optimizer.apply_gradients(zip(gradients, model.trainable_variables))

If you use the Keras Model.fit API, you won't have to worry about dataset iteration.

model.compile(optimizer=optimizer, loss=loss_fn)
model.fit(dataset)

Use Keras training loops

If you don't need low-level control of your training process, using Keras' built-in fit, evaluate, and predict methods is recommended. These methods provide a uniform interface to train the model regardless of the implementation (sequential, functional, or sub-classed).

The advantages of these methods include:

  • They accept Numpy arrays, Python generators and, tf.data.Datasets.
  • They apply regularization, and activation losses automatically.
  • They support tf.distribute where the training code remains the same regardless of the hardware configuration.
  • They support arbitrary callables as losses and metrics.
  • They support callbacks like tf.keras.callbacks.TensorBoard, and custom callbacks.
  • They are performant, automatically using TensorFlow graphs.

Here is an example of training a model using a Dataset. For details on how this works, check out the tutorials.

model = tf.keras.Sequential([
    tf.keras.layers.Conv2D(32, 3, activation='relu',
                           kernel_regularizer=tf.keras.regularizers.l2(0.02),
                           input_shape=(28, 28, 1)),
    tf.keras.layers.MaxPooling2D(),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dropout(0.1),
    tf.keras.layers.Dense(64, activation='relu'),
    tf.keras.layers.BatchNormalization(),
    tf.keras.layers.Dense(10)
])

# Model is the full model w/o custom layers
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

model.fit(train_data, epochs=NUM_EPOCHS)
loss, acc = model.evaluate(test_data)

print("Loss {}, Accuracy {}".format(loss, acc))
Epoch 1/5
5/5 [==============================] - 9s 9ms/step - loss: 1.5774 - accuracy: 0.5063
Epoch 2/5
2021-09-22 22:13:26.932626: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
5/5 [==============================] - 0s 5ms/step - loss: 0.4498 - accuracy: 0.9125
Epoch 3/5
2021-09-22 22:13:27.323101: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
5/5 [==============================] - 0s 5ms/step - loss: 0.2929 - accuracy: 0.9563
Epoch 4/5
2021-09-22 22:13:27.717803: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
5/5 [==============================] - 0s 5ms/step - loss: 0.2055 - accuracy: 0.9875
Epoch 5/5
2021-09-22 22:13:28.088985: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
5/5 [==============================] - 0s 5ms/step - loss: 0.1669 - accuracy: 0.9937
2021-09-22 22:13:28.458529: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
5/5 [==============================] - 0s 3ms/step - loss: 1.6056 - accuracy: 0.6500
Loss 1.6056102514266968, Accuracy 0.6499999761581421
2021-09-22 22:13:28.956635: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

Customize training and write your own loop

If Keras models work for you, but you need more flexibility and control of the training step or the outer training loops, you can implement your own training steps or even entire training loops. See the Keras guide on customizing fit to learn more.

You can also implement many things as a tf.keras.callbacks.Callback.

This method has many of the advantages mentioned previously, but gives you control of the train step and even the outer loop.

There are three steps to a standard training loop:

  1. Iterate over a Python generator or tf.data.Dataset to get batches of examples.
  2. Use tf.GradientTape to collect gradients.
  3. Use one of the tf.keras.optimizers to apply weight updates to the model's variables.

Remember:

  • Always include a training argument on the call method of subclassed layers and models.
  • Make sure to call the model with the training argument set correctly.
  • Depending on usage, model variables may not exist until the model is run on a batch of data.
  • You need to manually handle things like regularization losses for the model.

There is no need to run variable initializers or to add manual control dependencies. tf.function handles automatic control dependencies and variable initialization on creation for you.

model = tf.keras.Sequential([
    tf.keras.layers.Conv2D(32, 3, activation='relu',
                           kernel_regularizer=tf.keras.regularizers.l2(0.02),
                           input_shape=(28, 28, 1)),
    tf.keras.layers.MaxPooling2D(),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dropout(0.1),
    tf.keras.layers.Dense(64, activation='relu'),
    tf.keras.layers.BatchNormalization(),
    tf.keras.layers.Dense(10)
])

optimizer = tf.keras.optimizers.Adam(0.001)
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

@tf.function
def train_step(inputs, labels):
  with tf.GradientTape() as tape:
    predictions = model(inputs, training=True)
    regularization_loss=tf.math.add_n(model.losses)
    pred_loss=loss_fn(labels, predictions)
    total_loss=pred_loss + regularization_loss

  gradients = tape.gradient(total_loss, model.trainable_variables)
  optimizer.apply_gradients(zip(gradients, model.trainable_variables))

for epoch in range(NUM_EPOCHS):
  for inputs, labels in train_data:
    train_step(inputs, labels)
  print("Finished epoch", epoch)
2021-09-22 22:13:29.878252: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
Finished epoch 0
2021-09-22 22:13:30.266807: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
Finished epoch 1
2021-09-22 22:13:30.626589: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
Finished epoch 2
2021-09-22 22:13:31.040058: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
Finished epoch 3
Finished epoch 4
2021-09-22 22:13:31.417637: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

Take advantage of tf.function with Python control flow

tf.function provides a way to convert data-dependent control flow into graph-mode equivalents like tf.cond and tf.while_loop.

One common place where data-dependent control flow appears is in sequence models. tf.keras.layers.RNN wraps an RNN cell, allowing you to either statically or dynamically unroll the recurrence. As an example, you could reimplement dynamic unroll as follows.

class DynamicRNN(tf.keras.Model):

  def __init__(self, rnn_cell):
    super(DynamicRNN, self).__init__(self)
    self.cell = rnn_cell

  @tf.function(input_signature=[tf.TensorSpec(dtype=tf.float32, shape=[None, None, 3])])
  def call(self, input_data):

    # [batch, time, features] -> [time, batch, features]
    input_data = tf.transpose(input_data, [1, 0, 2])
    timesteps =  tf.shape(input_data)[0]
    batch_size = tf.shape(input_data)[1]
    outputs = tf.TensorArray(tf.float32, timesteps)
    state = self.cell.get_initial_state(batch_size = batch_size, dtype=tf.float32)
    for i in tf.range(timesteps):
      output, state = self.cell(input_data[i], state)
      outputs = outputs.write(i, output)
    return tf.transpose(outputs.stack(), [1, 0, 2]), state
lstm_cell = tf.keras.layers.LSTMCell(units = 13)

my_rnn = DynamicRNN(lstm_cell)
outputs, state = my_rnn(tf.random.normal(shape=[10,20,3]))
print(outputs.shape)
(10, 20, 13)

Read the tf.function guide for a more information.

New-style metrics and losses

Metrics and losses are both objects that work eagerly and in tf.functions.

A loss object is callable, and expects (y_true, y_pred) as arguments:

cce = tf.keras.losses.CategoricalCrossentropy(from_logits=True)
cce([[1, 0]], [[-1.0,3.0]]).numpy()
4.01815

Use metrics to collect and display data

You can use tf.metrics to aggregate data and tf.summary to log summaries and redirect it to a writer using a context manager. The summaries are emitted directly to the writer which means that you must provide the step value at the callsite.

summary_writer = tf.summary.create_file_writer('/tmp/summaries')
with summary_writer.as_default():
  tf.summary.scalar('loss', 0.1, step=42)

Use tf.metrics to aggregate data before logging them as summaries. Metrics are stateful; they accumulate values and return a cumulative result when you call the result method (such as Mean.result). Clear accumulated values with Model.reset_states.

def train(model, optimizer, dataset, log_freq=10):
  avg_loss = tf.keras.metrics.Mean(name='loss', dtype=tf.float32)
  for images, labels in dataset:
    loss = train_step(model, optimizer, images, labels)
    avg_loss.update_state(loss)
    if tf.equal(optimizer.iterations % log_freq, 0):
      tf.summary.scalar('loss', avg_loss.result(), step=optimizer.iterations)
      avg_loss.reset_states()

def test(model, test_x, test_y, step_num):
  # training=False is only needed if there are layers with different
  # behavior during training versus inference (e.g. Dropout).
  loss = loss_fn(model(test_x, training=False), test_y)
  tf.summary.scalar('loss', loss, step=step_num)

train_summary_writer = tf.summary.create_file_writer('/tmp/summaries/train')
test_summary_writer = tf.summary.create_file_writer('/tmp/summaries/test')

with train_summary_writer.as_default():
  train(model, optimizer, dataset)

with test_summary_writer.as_default():
  test(model, test_x, test_y, optimizer.iterations)

Visualize the generated summaries by pointing TensorBoard to the summary log directory:

tensorboard --logdir /tmp/summaries

Use the tf.summary API to write summary data for visualization in TensorBoard. For more info, read the tf.summary guide.

# Create the metrics
loss_metric = tf.keras.metrics.Mean(name='train_loss')
accuracy_metric = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')

@tf.function
def train_step(inputs, labels):
  with tf.GradientTape() as tape:
    predictions = model(inputs, training=True)
    regularization_loss=tf.math.add_n(model.losses)
    pred_loss=loss_fn(labels, predictions)
    total_loss=pred_loss + regularization_loss

  gradients = tape.gradient(total_loss, model.trainable_variables)
  optimizer.apply_gradients(zip(gradients, model.trainable_variables))
  # Update the metrics
  loss_metric.update_state(total_loss)
  accuracy_metric.update_state(labels, predictions)


for epoch in range(NUM_EPOCHS):
  # Reset the metrics
  loss_metric.reset_states()
  accuracy_metric.reset_states()

  for inputs, labels in train_data:
    train_step(inputs, labels)
  # Get the metric results
  mean_loss=loss_metric.result()
  mean_accuracy = accuracy_metric.result()

  print('Epoch: ', epoch)
  print('  loss:     {:.3f}'.format(mean_loss))
  print('  accuracy: {:.3f}'.format(mean_accuracy))
2021-09-22 22:13:32.370558: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
Epoch:  0
  loss:     0.143
  accuracy: 0.997
2021-09-22 22:13:32.752675: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
Epoch:  1
  loss:     0.119
  accuracy: 0.997
2021-09-22 22:13:33.122889: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
Epoch:  2
  loss:     0.106
  accuracy: 0.997
2021-09-22 22:13:33.522935: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
Epoch:  3
  loss:     0.089
  accuracy: 1.000
Epoch:  4
  loss:     0.079
  accuracy: 1.000
2021-09-22 22:13:33.899024: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.

Keras metric names

Keras models are consistent about handling metric names. When you pass a string in the list of metrics, that exact string is used as the metric's name. These names are visible in the history object returned by model.fit, and in the logs passed to keras.callbacks. is set to the string you passed in the metric list.

model.compile(
    optimizer = tf.keras.optimizers.Adam(0.001),
    loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    metrics = ['acc', 'accuracy', tf.keras.metrics.SparseCategoricalAccuracy(name="my_accuracy")])
history = model.fit(train_data)
5/5 [==============================] - 1s 5ms/step - loss: 0.0962 - acc: 0.9969 - accuracy: 0.9969 - my_accuracy: 0.9969
2021-09-22 22:13:34.802566: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset  will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
history.history.keys()
dict_keys(['loss', 'acc', 'accuracy', 'my_accuracy'])

Debugging

Use eager execution to run your code step-by-step to inspect shapes, data types and values. Certain APIs, like tf.function, tf.keras, etc. are designed to use Graph execution, for performance and portability. When debugging, use tf.config.run_functions_eagerly(True) to use eager execution inside this code.

For example:

@tf.function
def f(x):
  if x > 0:
    import pdb
    pdb.set_trace()
    x = x + 1
  return x

tf.config.run_functions_eagerly(True)
f(tf.constant(1))
f()
-> x = x + 1
(Pdb) l
  6     @tf.function
  7     def f(x):
  8       if x > 0:
  9         import pdb
 10         pdb.set_trace()
 11  ->     x = x + 1
 12       return x
 13
 14     tf.config.run_functions_eagerly(True)
 15     f(tf.constant(1))
[EOF]

This also works inside Keras models and other APIs that support eager execution:

class CustomModel(tf.keras.models.Model):

  @tf.function
  def call(self, input_data):
    if tf.reduce_mean(input_data) > 0:
      return input_data
    else:
      import pdb
      pdb.set_trace()
      return input_data // 2


tf.config.run_functions_eagerly(True)
model = CustomModel()
model(tf.constant([-2, -4]))
call()
-> return input_data // 2
(Pdb) l
 10         if tf.reduce_mean(input_data) > 0:
 11           return input_data
 12         else:
 13           import pdb
 14           pdb.set_trace()
 15  ->       return input_data // 2
 16
 17
 18     tf.config.run_functions_eagerly(True)
 19     model = CustomModel()
 20     model(tf.constant([-2, -4]))

Notes:

Do not keep tf.Tensors in your objects

These tensor objects might get created either in a tf.function or in the eager context, and these tensors behave differently. Always use tf.Tensors only for intermediate values.

To track state, use tf.Variables as they are always usable from both contexts. Read the tf.Variable guide to learn more.

Resources and further reading

  • Read the TF2 guides and tutorials to learn more about how to use TF2.

  • If you previously used TF1.x, it is highly recommended you migrate your code to TF2. Read the migration guides to learn more.