Помогают защитить Большой Барьерный Риф с TensorFlow на Kaggle Присоединяйтесь вызов

Переход с TPU embedding_columns на TPUEmbedding layer

Посмотреть на TensorFlow.org Запустить в Google Colab Посмотреть исходный код на GitHub Скачать блокнот

В этом руководстве показано, как перенести обучение встраиванию на TPU с API embedding_column TPUEstimator на API уровня TPUStrategy TPUEmbedding

Вложения - это (большие) матрицы. Это таблицы поиска, которые отображают разреженное пространство признаков в плотные векторы. Вложения обеспечивают эффективное и плотное представление, фиксируя сложные сходства и отношения между функциями.

TensorFlow включает специализированную поддержку обучающих вложений на TPU. Эта поддержка встраивания, характерная для TPU, позволяет обучать вложения, размер которых превышает объем памяти одного устройства TPU, и использовать разреженные и неоднородные входные данные на TPU.

Для получения дополнительной информации см. документацию по API уровня tfrs.layers.embedding.TPUEmbedding , а также документы tf.tpu.experimental.embedding.TableConfig и tf.tpu.experimental.embedding.FeatureConfig . Для обзора tf.distribute.TPUStrategy ознакомьтесь с учебным пособием по Distributed и руководством по использованию TPU . Если вы переходите с TPUEstimator на TPUStrategy , ознакомьтесь с руководством по миграции TPU .

Настраивать

Начните с установки TensorFlow Recommenders и импорта некоторых необходимых пакетов:

pip install tensorflow-recommenders
import tensorflow as tf
import tensorflow.compat.v1 as tf1

# TPUEmbedding layer is not part of TensorFlow.
import tensorflow_recommenders as tfrs
/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/requests/__init__.py:104: RequestsDependencyWarning: urllib3 (1.26.7) or chardet (2.3.0)/charset_normalizer (2.0.9) doesn't match a supported version!
  RequestsDependencyWarning)

И подготовьте простой набор данных для демонстрационных целей:

features = [[1., 1.5]]
embedding_features_indices = [[0, 0], [0, 1]]
embedding_features_values = [0, 5]
labels = [[0.3]]
eval_features = [[4., 4.5]]
eval_embedding_features_indices = [[0, 0], [0, 1]]
eval_embedding_features_values = [4, 3]
eval_labels = [[0.8]]

TensorFlow 1: обучайте встраивания на TPU с помощью TPUEstimator

В TensorFlow 1 вы настраиваете встраивание TPU с помощью API tf.compat.v1.tpu.experimental.embedding_column и обучаете/оцениваете модель на TPU с помощью tf.compat.v1.estimator.tpu.TPUEstimator .

Входные данные представляют собой целые числа в диапазоне от нуля до размера словаря для таблицы встраивания TPU. Начните с кодирования входных данных для категориального идентификатора с помощью tf.feature_column.categorical_column_with_identity . Используйте "sparse_feature" в качестве key параметра, поскольку входные функции имеют целочисленное значение, а num_buckets — это размер словаря для таблицы встраивания ( 10 ).

embedding_id_column = (
      tf1.feature_column.categorical_column_with_identity(
          key="sparse_feature", num_buckets=10))

Затем преобразуйте разреженные категориальные входные данные в плотное представление с помощью tpu.experimental.embedding_column , где dimension — это ширина таблицы встраивания. Он будет хранить вектор внедрения для каждого из num_buckets .

embedding_column = tf1.tpu.experimental.embedding_column(
    embedding_id_column, dimension=5)

Теперь определите специфичную для TPU конфигурацию встраивания с помощью tf.estimator.tpu.experimental.EmbeddingConfigSpec . Вы передадите его позже в tf.estimator.tpu.TPUEstimator в качестве параметра embedding_config_spec .

embedding_config_spec = tf1.estimator.tpu.experimental.EmbeddingConfigSpec(
    feature_columns=(embedding_column,),
    optimization_parameters=(
        tf1.tpu.experimental.AdagradParameters(0.05)))

Затем, чтобы использовать TPUEstimator , определите:

  • Входная функция для обучающих данных
  • Функция ввода оценки для данных оценки
  • Функция модели для указания TPUEstimator , как определяется операция обучения с помощью функций и меток.
def _input_fn(params):
  dataset = tf1.data.Dataset.from_tensor_slices((
      {"dense_feature": features,
       "sparse_feature": tf1.SparseTensor(
           embedding_features_indices,
           embedding_features_values, [1, 2])},
           labels))
  dataset = dataset.repeat()
  return dataset.batch(params['batch_size'], drop_remainder=True)

def _eval_input_fn(params):
  dataset = tf1.data.Dataset.from_tensor_slices((
      {"dense_feature": eval_features,
       "sparse_feature": tf1.SparseTensor(
           eval_embedding_features_indices,
           eval_embedding_features_values, [1, 2])},
           eval_labels))
  dataset = dataset.repeat()
  return dataset.batch(params['batch_size'], drop_remainder=True)

def _model_fn(features, labels, mode, params):
  embedding_features = tf1.keras.layers.DenseFeatures(embedding_column)(features)
  concatenated_features = tf1.keras.layers.Concatenate(axis=1)(
      [embedding_features, features["dense_feature"]])
  logits = tf1.layers.Dense(1)(concatenated_features)
  loss = tf1.losses.mean_squared_error(labels=labels, predictions=logits)
  optimizer = tf1.train.AdagradOptimizer(0.05)
  optimizer = tf1.tpu.CrossShardOptimizer(optimizer)
  train_op = optimizer.minimize(loss, global_step=tf1.train.get_global_step())
  return tf1.estimator.tpu.TPUEstimatorSpec(mode, loss=loss, train_op=train_op)

Определив эти функции, создайте tf.distribute.cluster_resolver.TPUClusterResolver , предоставляющий информацию о кластере, и объект tf.compat.v1.estimator.tpu.RunConfig .

Наряду с определенной вами функцией модели теперь вы можете создать TPUEstimator . Здесь вы упростите поток, пропустив сохранение контрольных точек. Затем вы укажете размер пакета для обучения и оценки для TPUEstimator .

cluster_resolver = tf1.distribute.cluster_resolver.TPUClusterResolver(tpu='')
print("All devices: ", tf1.config.list_logical_devices('TPU'))
All devices:  []
tpu_config = tf1.estimator.tpu.TPUConfig(
    iterations_per_loop=10,
    per_host_input_for_training=tf1.estimator.tpu.InputPipelineConfig
          .PER_HOST_V2)
config = tf1.estimator.tpu.RunConfig(
    cluster=cluster_resolver,
    save_checkpoints_steps=None,
    tpu_config=tpu_config)
estimator = tf1.estimator.tpu.TPUEstimator(
    model_fn=_model_fn, config=config, train_batch_size=8, eval_batch_size=8,
    embedding_config_spec=embedding_config_spec)
WARNING:tensorflow:Estimator's model_fn (<function _model_fn at 0x7f89cba2c510>) includes params argument, but params are not passed to Estimator.
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpslacgplc
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpslacgplc', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true
cluster_def {
  job {
    name: "worker"
    tasks {
      key: 0
      value: "10.240.1.2:8470"
    }
  }
}
isolate_session_state: true
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': None, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({'worker': ['10.240.1.2:8470']}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': 'grpc://10.240.1.2:8470', '_evaluation_master': 'grpc://10.240.1.2:8470', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1, '_tpu_config': TPUConfig(iterations_per_loop=10, num_shards=None, num_cores_per_replica=None, per_host_input_for_training=3, tpu_job_name=None, initial_infeed_sleep_secs=None, input_partition_dims=None, eval_training_input_configuration=2, experimental_host_call_every_n_steps=1, experimental_allow_per_host_v2_parallel_get_next=False, experimental_feed_hook=None), '_cluster': <tensorflow.python.distribute.cluster_resolver.tpu.tpu_cluster_resolver.TPUClusterResolver object at 0x7f89cbabd860>}
INFO:tensorflow:_TPUContext: eval_on_tpu True

Вызовите TPUEstimator.train , чтобы начать обучение модели:

estimator.train(_input_fn, steps=1)
INFO:tensorflow:Querying Tensorflow master (grpc://10.240.1.2:8470) for TPU system metadata.
INFO:tensorflow:Found TPU system:
INFO:tensorflow:*** Num TPU Cores: 8
INFO:tensorflow:*** Num TPU Workers: 1
INFO:tensorflow:*** Num TPU Cores Per Worker: 8
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, -1, 4249802972614768303)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 17179869184, -1631169957276253727)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 17179869184, -8564179621708229348)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 17179869184, 6484303620678310894)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 17179869184, -1060903890713604084)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 17179869184, 7990733554234518935)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 17179869184, -7473681025580225735)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 17179869184, -7209865368423392507)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 17179869184, 97822894840667110)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 17179869184, 650061930241947482)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, -3764407713936561171)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
INFO:tensorflow:Calling model_fn.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/tpu/feature_column_v2.py:479: IdentityCategoricalColumn._num_buckets (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version.
Instructions for updating:
The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead.
INFO:tensorflow:Querying Tensorflow master (grpc://10.240.1.2:8470) for TPU system metadata.
INFO:tensorflow:Found TPU system:
INFO:tensorflow:*** Num TPU Cores: 8
INFO:tensorflow:*** Num TPU Workers: 1
INFO:tensorflow:*** Num TPU Cores Per Worker: 8
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, -1, 4249802972614768303)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 17179869184, -1631169957276253727)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 17179869184, -8564179621708229348)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 17179869184, 6484303620678310894)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 17179869184, -1060903890713604084)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 17179869184, 7990733554234518935)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 17179869184, -7473681025580225735)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 17179869184, -7209865368423392507)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 17179869184, 97822894840667110)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 17179869184, 650061930241947482)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, -3764407713936561171)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/adagrad.py:77: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version.
Instructions for updating:
Call initializer instance with the dtype argument instead of passing it to the constructor
INFO:tensorflow:Bypassing TPUEstimator hook
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:TPU job name worker
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py:758: Variable.load (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Prefer Variable.assign which has equivalent behavior in 2.X.
INFO:tensorflow:Initialized dataset iterators in 0 seconds
INFO:tensorflow:Installing graceful shutdown hook.
INFO:tensorflow:Creating heartbeat manager for ['/job:worker/replica:0/task:0/device:CPU:0']
INFO:tensorflow:Configuring worker heartbeat: shutdown_mode: WAIT_FOR_COORDINATOR

INFO:tensorflow:Init TPU system
INFO:tensorflow:Initialized TPU in 9 seconds
INFO:tensorflow:Starting infeed thread controller.
INFO:tensorflow:Starting outfeed thread controller.
INFO:tensorflow:Enqueue next (1) batch(es) of data to infeed.
INFO:tensorflow:Dequeue next (1) batch(es) of data from outfeed.
INFO:tensorflow:Outfeed finished for iteration (0, 0)
INFO:tensorflow:loss = 0.07431596, step = 1
INFO:tensorflow:Stop infeed thread controller
INFO:tensorflow:Shutting down InfeedController thread.
INFO:tensorflow:InfeedController received shutdown signal, stopping.
INFO:tensorflow:Infeed thread finished, shutting down.
INFO:tensorflow:infeed marked as finished
INFO:tensorflow:Stop output thread controller
INFO:tensorflow:Shutting down OutfeedController thread.
INFO:tensorflow:OutfeedController received shutdown signal, stopping.
INFO:tensorflow:Outfeed thread finished, shutting down.
INFO:tensorflow:outfeed marked as finished
INFO:tensorflow:Shutdown TPU system.
INFO:tensorflow:Loss for final step: 0.07431596.
INFO:tensorflow:training_loop marked as finished
<tensorflow_estimator.python.estimator.tpu.tpu_estimator.TPUEstimator at 0x7f8cea457be0>

Затем вызовите TPUEstimator.evaluate , чтобы оценить модель, используя данные оценки:

estimator.evaluate(_eval_input_fn, steps=1)
INFO:tensorflow:Could not find trained model in model_dir: /tmp/tmpslacgplc, running initialization to evaluate.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Querying Tensorflow master (grpc://10.240.1.2:8470) for TPU system metadata.
INFO:tensorflow:Found TPU system:
INFO:tensorflow:*** Num TPU Cores: 8
INFO:tensorflow:*** Num TPU Workers: 1
INFO:tensorflow:*** Num TPU Cores Per Worker: 8
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, -1, 4249802972614768303)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 17179869184, -1631169957276253727)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 17179869184, -8564179621708229348)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 17179869184, 6484303620678310894)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 17179869184, -1060903890713604084)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 17179869184, 7990733554234518935)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 17179869184, -7473681025580225735)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 17179869184, -7209865368423392507)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 17179869184, 97822894840667110)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 17179869184, 650061930241947482)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, -3764407713936561171)
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py:3406: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Deprecated in favor of operator or tf.math.divide.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2021-12-10T14:13:17
INFO:tensorflow:TPU job name worker
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Init TPU system
INFO:tensorflow:Initialized TPU in 12 seconds
INFO:tensorflow:Starting infeed thread controller.
INFO:tensorflow:Starting outfeed thread controller.
INFO:tensorflow:Initialized dataset iterators in 0 seconds
INFO:tensorflow:Enqueue next (1) batch(es) of data to infeed.
INFO:tensorflow:Dequeue next (1) batch(es) of data from outfeed.
INFO:tensorflow:Outfeed finished for iteration (0, 0)
INFO:tensorflow:Evaluation [1/1]
INFO:tensorflow:Stop infeed thread controller
INFO:tensorflow:Shutting down InfeedController thread.
INFO:tensorflow:InfeedController received shutdown signal, stopping.
INFO:tensorflow:Infeed thread finished, shutting down.
INFO:tensorflow:infeed marked as finished
INFO:tensorflow:Stop output thread controller
INFO:tensorflow:Shutting down OutfeedController thread.
INFO:tensorflow:OutfeedController received shutdown signal, stopping.
INFO:tensorflow:Outfeed thread finished, shutting down.
INFO:tensorflow:outfeed marked as finished
INFO:tensorflow:Shutdown TPU system.
INFO:tensorflow:Inference Time : 12.58107s
INFO:tensorflow:Finished evaluation at 2021-12-10-14:13:29
INFO:tensorflow:Saving dict for global step 1: global_step = 1, loss = 48.120014
INFO:tensorflow:evaluation_loop marked as finished
{'loss': 48.120014, 'global_step': 1}

TensorFlow 2: обучайте встраивания на TPU с помощью TPUStrategy

В TensorFlow 2 для обучения рабочих TPU используйте tf.distribute.TPUStrategy вместе с API-интерфейсами Keras для определения модели и обучения/оценки. (Обратитесь к руководству по использованию TPU для получения дополнительных примеров обучения с помощью Keras Model.fit и пользовательского цикла обучения (с tf.function и tf.GradientTape ).)

Поскольку вам необходимо выполнить некоторую работу по инициализации для подключения к удаленному кластеру и инициализации рабочих процессов TPU, начните с создания TPUClusterResolver для предоставления информации о кластере и подключения к кластеру. (Подробнее см. в разделе « Инициализация TPU » руководства « Использование TPU».)

cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='')
tf.config.experimental_connect_to_cluster(cluster_resolver)
tf.tpu.experimental.initialize_tpu_system(cluster_resolver)
print("All devices: ", tf.config.list_logical_devices('TPU'))
INFO:tensorflow:Clearing out eager caches
INFO:tensorflow:Clearing out eager caches
INFO:tensorflow:Initializing the TPU system: grpc://10.240.1.2:8470
INFO:tensorflow:Initializing the TPU system: grpc://10.240.1.2:8470
INFO:tensorflow:Finished initializing TPU system.
INFO:tensorflow:Finished initializing TPU system.
All devices:  [LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:0', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:1', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:2', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:3', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:4', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:5', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:6', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:7', device_type='TPU')]

Далее подготовьте данные. Это похоже на то, как вы создали набор данных в примере TensorFlow 1, за исключением того, что функции набора данных теперь передается объект tf.distribute.InputContext , а не params dict. Вы можете использовать этот объект, чтобы определить размер локального пакета (и для какого хоста предназначен этот конвейер, чтобы вы могли правильно разбить свои данные).

  • При использовании API tfrs.layers.embedding.TPUEmbedding важно включить параметр drop_remainder=True при пакетной обработке набора данных с помощью Dataset.batch , поскольку TPUEmbedding требуется фиксированный размер пакета.
  • Кроме того, для оценки и обучения необходимо использовать один и тот же размер пакета, если они выполняются на одном и том же наборе устройств.
  • Наконец, вы должны использовать tf.keras.utils.experimental.DatasetCreator вместе со специальной опцией ввода — Experiment_fetch_to_device experimental_fetch_to_device=False — в tf.distribute.InputOptions (которая содержит конфигурации, специфичные для стратегии). Это показано ниже:
global_batch_size = 8

def _input_dataset(context: tf.distribute.InputContext):
  dataset = tf.data.Dataset.from_tensor_slices((
      {"dense_feature": features,
       "sparse_feature": tf.SparseTensor(
           embedding_features_indices,
           embedding_features_values, [1, 2])},
           labels))
  dataset = dataset.shuffle(10).repeat()
  dataset = dataset.batch(
      context.get_per_replica_batch_size(global_batch_size),
      drop_remainder=True)
  return dataset.prefetch(2)

def _eval_dataset(context: tf.distribute.InputContext):
  dataset = tf.data.Dataset.from_tensor_slices((
      {"dense_feature": eval_features,
       "sparse_feature": tf.SparseTensor(
           eval_embedding_features_indices,
           eval_embedding_features_values, [1, 2])},
           eval_labels))
  dataset = dataset.repeat()
  dataset = dataset.batch(
      context.get_per_replica_batch_size(global_batch_size),
      drop_remainder=True)
  return dataset.prefetch(2)

input_options = tf.distribute.InputOptions(
    experimental_fetch_to_device=False)

input_dataset = tf.keras.utils.experimental.DatasetCreator(
    _input_dataset, input_options=input_options)

eval_dataset = tf.keras.utils.experimental.DatasetCreator(
    _eval_dataset, input_options=input_options)

Затем, как только данные будут подготовлены, вы создадите TPUStrategy и определите модель, метрики и оптимизатор в рамках этой стратегии ( Strategy.scope ).

Вы должны выбрать число для steps_per_execution в Model.compile так как оно указывает количество пакетов, которые должны выполняться во время каждого вызова tf.function , и имеет решающее значение для производительности. Этот аргумент похож на iterations_per_loop , используемый в TPUEstimator .

Функции и конфигурация таблицы, которые были указаны в TensorFlow 1 через tf.tpu.experimental.embedding_columntf.tpu.experimental.shared_embedding_column ), могут быть указаны непосредственно в TensorFlow 2 через пару объектов конфигурации:

(Дополнительные сведения см. в соответствующей документации по API.)

strategy = tf.distribute.TPUStrategy(cluster_resolver)
with strategy.scope():
  optimizer = tf.keras.optimizers.Adagrad(learning_rate=0.05)
  dense_input = tf.keras.Input(shape=(2,), dtype=tf.float32, batch_size=global_batch_size)
  sparse_input = tf.keras.Input(shape=(), dtype=tf.int32, batch_size=global_batch_size)
  embedded_input = tfrs.layers.embedding.TPUEmbedding(
      feature_config=tf.tpu.experimental.embedding.FeatureConfig(
          table=tf.tpu.experimental.embedding.TableConfig(
              vocabulary_size=10,
              dim=5,
              initializer=tf.initializers.TruncatedNormal(mean=0.0, stddev=1)),
          name="sparse_input"),
      optimizer=optimizer)(sparse_input)
  input = tf.keras.layers.Concatenate(axis=1)([dense_input, embedded_input])
  result = tf.keras.layers.Dense(1)(input)
  model = tf.keras.Model(inputs={"dense_feature": dense_input, "sparse_feature": sparse_input}, outputs=result)
  model.compile(optimizer, "mse", steps_per_execution=10)
INFO:tensorflow:Found TPU system:
INFO:tensorflow:Found TPU system:
INFO:tensorflow:*** Num TPU Cores: 8
INFO:tensorflow:*** Num TPU Cores: 8
INFO:tensorflow:*** Num TPU Workers: 1
INFO:tensorflow:*** Num TPU Workers: 1
INFO:tensorflow:*** Num TPU Cores Per Worker: 8
INFO:tensorflow:*** Num TPU Cores Per Worker: 8
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)

После этого вы готовы обучить модель с помощью обучающего набора данных:

model.fit(input_dataset, epochs=5, steps_per_epoch=10)
Epoch 1/5
10/10 [==============================] - 2s 160ms/step - loss: 0.1521
Epoch 2/5
10/10 [==============================] - 0s 3ms/step - loss: 1.5800e-05
Epoch 3/5
10/10 [==============================] - 0s 4ms/step - loss: 1.9149e-09
Epoch 4/5
10/10 [==============================] - 0s 3ms/step - loss: 3.1068e-13
Epoch 5/5
10/10 [==============================] - 0s 3ms/step - loss: 7.1054e-15
<keras.callbacks.History at 0x7f89c82d8b38>

Наконец, оцените модель, используя набор данных для оценки:

model.evaluate(eval_dataset, steps=1, return_dict=True)
1/1 [==============================] - 1s 1s/step - loss: 11.2934
{'loss': 11.293418884277344}

Следующие шаги

Узнайте больше о настройке встроенных приложений для TPU в документации по API:

Для получения дополнительной информации о TPUStrategy в TensorFlow 2 рассмотрите следующие ресурсы:

Чтобы узнать больше о настройке обучения, см.:

TPU — специализированные ASIC от Google для машинного обучения — доступны через Google Colab , TPU Research Cloud и Cloud TPU .